Ìý Ìý In 2009 we won a 5 year 2009-2014 $20 mill DOE, Office of Science "Energy Frontiers Research Center" (EFRC) called "Center of Inverse Design" (CID).

The followingÌýare the principal publication of A. Zunger's team from EFRC "Center for Inverse Design"; Director Alex Zunger, proposal submitted 10/2008, started 8/2009 and continued to 8/2014, (moved to CU Â鶹ӰԺ and continued as EFRC Science Chief, 2011).

123

Ìý

38. J.M. Rondinelli, K.R. Poeppelmeier, and A. Zunger "" APL Mater., 3, 080702 (2015). (PDF)

37. F. Yan, X. Zhang, Yonggang Yu, L.Yu, A. Nagaraja, T.O. Mason, and Alex Zunger"" Nature Communication 6, 7308 (2015). (PDF)

36. R. Gautier, X. Zhang, L. Hu, L. Yu, Y. Lin, T. O. L. Sunde, D. Chon, K. R. Poeppelmeier, A. Zunger,"", Nature Chemistry 7, 308-316 (2015).(PDF)

35. X. Zhang, Q. Liu, J.W. Luo, A. J. Freeman, A. Zunger,"" Nature Physics 10, 387-393 (2014).(PDF)

34. L. Yu, A. Zunger,"" Nature Communications 5, 5118 (2014).(PDF)

33. V. Stevanovic, S. Lany, D.S. Ginley, W. Tumas, A. Zunger,"" Physical Chemistry Chemical Physics 16, 3706-3714 (2014).(PDF)

32. Yue Cao, J. A.Waugh, X-W. Zhang, J-W. Luo, Q.Wang, T. J. Reber, S. K. Mo, Z. Xu,A. Yang, J. Schneeloch, G. D. Gu, M. Brahlek, N. Bansal, S. Oh, A. Zunger and D. S. Dessau"" Nature Physics 9 , 499 (2013)(PDF)

31. H. Peng, A. Zakutayev, S. Lany, T. R. Paudel, M. d’Avezac, P. F. Ndione, J. D. Perkins, D. S. Ginley, A. R. Nagaraja, N. H. Perry, T. O. Mason, A. Zunger,"" Advanced Functional Materials 23, 5267-5276 (2013).(PDF)

30. A. Zakutayev, X. Zhang, A. Nagaraja, L. Yu, S. Lany, T. O. Mason, D. S. Ginley, A. Zunger,"" J. Am. Chem. Soc. 135, 10048-10054 (2013).(PDF)

29. A. S. Mikhaylushkin, X. Zhang, A. Zunger,"" Phy. Rev. B. 87, 094103 (2013).(PDF)

28. L. Zhang, J.W. Luo, A. Saraiva, B. Koiller, A. Zunger,"" Nature Communications 4, 2396 (2013).(PDF)

27. L. Yu, R. S. Kokenyesi, D. A. Keszler, A. Zunger,"" Advanced Energy Materials 3, 43-48 (2013).(PDF)

26. L. Y. Lim, S. Lany, Y. Chang, E. Rotenberg, A. Zunger, M. F. Toney,"" Phy. Rev. B. 86, 235113 (2012).(PDF)

25. J. Vidal, X. Zhang, V. Stevanovic, J.W. Luo, A. Zunger,"" Phy. Rev. B. 86, 075316 (2012).(PDF)

24. X. Zhang, V. Stevanović, M. d’Avezac, S. Lany, A. Zunger,"" Phy. Rev. B. 86, 014109 (2012).(PDF)

23. N. H. Perry, T. O. Mason, C. Ma, A. Navrotsky, Y. Shi, J. S. Bettinger, M. F. Toney, T. R. Paudel, S. Lany, A. Zunger,"" Journal of Solid State Chemistry 190, 143-149, (2012).(PDF)

22. X. Zhang, L. Yu, A. Zakutayev, A. Zunger,"" Advanced Functional Materials 22, 1425-1435 (2012).(PDF)

21. K. P. McKenna, M. J. Wolf, A. L. Shluger, S. Lany, A. Zunger,"" Physical Review Letters 108, 116403 (2012).(PDF)

20. V. Stevanovic, S. Lany, X. Zhang, A. Zunger,"" Phy. Rev. B. 85, 115104 (2012).(PDF)

19. L. Yu, A. Zunger,"", Physical Review Letters 108, 068701 (2012).(PDF)

18. L. Zhang, M. d'Avezac, J.W. Luo, A. Zunger,"" Nanoletters 12, 984-991 (2012).(PDF)

17. S. Lany, A. Zakutayev, T. O. Mason, J. F. Wager, K. R. Poeppelemeier, J.D. Perkins, J. J. Berry, D. S. Ginley, and A. Zunger,"" Physical Review Letters 108, 016802 (2012).(PDF)

16. A. Zakutayev, T. R. Paudel, P. F. Ndione, J. D. Perkins, S. Lany, A. Zunger, and D. S. Ginley,"" Phy. Rev. B. 85, 085204 (2012).(PDF)

15. A. R. Nagaraja, N. H. Perry, T. O. Mason, Y. Tang, M. Grayson, T. R. Paudel, S. Lany, A. Zunger,"" Journal of the American Ceramic Society 95, 269-274 (2012).(PDF)

14. J. D. Perkins, T. R. Paudel, A. Zakutayev, P. F. Nidone, P. A. Parilla, D. L. Young, S. Lany, D. S. Ginley, A. Zunger, N. H. Perry, Y. Tang, M. Grayson, T. O. Mason, J. S. Bettinger, Y. Shi, and M. F. Toney,"" Phy. Rev. B. 84, 205207 (2011).(PDF)

13. J. Vidal, X. Zhang, L. Yu, J.W. Luo, and A. Zunger,"" Phy. Rev. B. 84, 041109(R) (2011).(PDF)

12. T. R. Paudel, A. Zakutayev, S. Lany, M. d'Avezac, A. Zunger,"" Advanced Functional Materials 21, 4493-4501 (2011).(PDF)

11. G. Trimarchi, H. Peng, J. Im, A. J. Freeman, V. Cloet, A. Raw, K. R. Poeppelmeier, K. Biswas, S. Lany, A. Zunger,"" Phy. Rev. B. 84, 165116 (2011).(PDF)

10. L. Yu, S. Lany, R. Kykyneshi, V. Jieratum, R. Ravichandran, B. Pelatt, E. Altschul, H. A. S. Platt, J. F. Wager, D. A. Keszler, and A. Zunger,"" Advanced Energy Materials 1, 748-753 (2011).(PDF)

9. L. Yu, S. Lany, R. Kykyneshi, V. Jieratum, R. Ravichandran, B. Pelatt, E. Altschul, H. A. S. Platt, J. F. Wager, D. A. Keszler, and A. Zunger,"" Advanced Energy Materials 1, 748-753 (2011).(PDF)

8. T. R. Paudel, S. Lany, M. d'Avezac, A. Zunger,"" Phy. Rev. B. 84, 064109 (2011).(PDF)

7. V. Stevanovic, M. d'Avezac, A. Zunger,"" J. Am. Chem. Soc. 133, 11649-11654 (2011).(PDF)

6. V. Stevanović, M. d'Avezac, A. Zunger,"" Physical Review Letters 105, 075501 (2010).(PDF)

5. X. Zhang, A. Zunger, and G. Trimarchi,"" J. Chem. Physics 133, 194504 (2010).(PDF)

4. X. Zhang, A. Zunger,"" Physical Review Letters 104, 245501 (2010).(PDF)

3. S. J. Clark, J. Robertson, S. Lany, and A. Zunger,"" Phys. Rev. B 81, 115311 (2010).(PDF)

2. S. Lany, A. Zunger,"" Phys. Rev. B 81, 113201 (2010).(PDF)

1. X. Zhang, A. Zunger,"" Advanced Functional Materials 20, 1944-1952 (2010).(PDF)

Ìý

Ìý60 Publications of Center for Inverse Design by subjects /modalities 2009-2015

July 20, 2015

A. Foundational: Development of methods and testing ideas [1]-[18]

[1]ÌýÌýÌý "Long-range order instead of phase separation in large lattice-mismatch isovalent AX-BX systems", X.W. Zhang, G. Trimarchi, M. d'Avezac, and A. Zunger, Physical Review B, 80, 241202, doi:10.1103/PhysRevB.80.241202 (2009).

[2]ÌýÌýÌý "Intrinsic defects in ZnO calculated by screened exchange and hybrid density functionals", S.J. Clark, J. Robertson, S. Lany, and A. Zunger, Physical Review B, 81, 115311, doi:10.1103/PhysRevB.81.115311 (2010).

[3]ÌýÌýÌý "Many-body GW calculation of the oxygen vacancy in ZnO", S. Lany, and A. Zunger, Physical Review B, 81, 113201, doi:10.1103/PhysRevB.81.113201 (2010).

[4]ÌýÌýÌý "Altered Reactivity and the Emergence of Ionic Metal Ordered Structures in Li-Cs at High Pressures", X.W. Zhang, and A. Zunger, Physical Review Letters, 104, 245501, doi:10.1103/PhysRevLett.104.245501 (2010).

[5]ÌýÌýÌý "Structure prediction and targeted synthesis: A new Na(n)N(2) diazenide crystalline structure", X.W. Zhang, A. Zunger, and G. Trimarchi, Journal of Chemical Physics, 133, 194504, doi:10.1063/1.3488440 (2010).

[6]ÌýÌýÌý "Surface Origin of High Conductivities in Undoped In(2)O(3) Thin Films", S. Lany, A. Zakutayev, T.O. Mason, J.F. Wager, K.R. Poeppelmeier, J.D. Perkins, J.J. Berry, D.S. Ginley, and A. Zunger, Physical Review Letters, 108, 016802, doi:10.1103/PhysRevLett.108.016802 (2012).

[7]ÌýÌýÌý "Correcting density functional theory for accurate predictions of compound enthalpies of formation: Fitted elemental-phase reference energies", V. Stevanovic, S. Lany, X.W. Zhang, and A. Zunger, Physical Review B, 85, 115104, doi:10.1103/PhysRevB.85.115104 (2012).

[8]ÌýÌýÌý "Two-Dimensional Polaronic Behavior in the Binary Oxides m-HfO2 and m-ZrO2", K.P. McKenna, M.J. Wolf, A.L. Shluger, S. Lany, and A. Zunger, Physical Review Letters, 108, 116403, doi:10.1103/PhysRevLett.108.116403 (2012).

[9]ÌýÌýÌý "Large insulating gap in topological insulators induced by negative spin-orbit splitting", J. Vidal, X.W. Zhang, V. Stevanovic, J.W. Luo, and A. Zunger, Physical Review B, 86, 075316, doi:10.1103/PhysRevB.86.075316 (2012).

[10]Ìý "Angle-resolved photoemission and quasiparticle calculation of ZnO:Ìý The need for d band shift in oxide semiconductors", L.Y. Lim, S. Lany, Y.J. Chang, E. Rotenberg, A. Zunger, and M.F. Toney, Physical Review B, 86, 235113, doi:10.1103/PhysRevB.86.235113 (2012).

[11]Ìý "Band-structure calculations for the 3d transition metal oxides in GW", S. Lany, Physical Review B, 87, 085112, doi:10.1103/PhysRevB.87.085112 (2013).

[12] Ìý“Crystal structures and metastability of carbon-boron compounds C3B and C5B", A. ÌýÌýÌýÌýMikhaylushkin, X. Zhang, and A. Zunger, Physical Review B, 87, 094103, doi:10.1103/PhysRevB.87.094103 (2013).

[13]Ìý "Polymorphic energy ordering of MgO, ZnO, GaN, and MnO within the random phase approximation", H. Peng, and S. Lany, Physical Review B, 87, 174113, doi:10.1103/PhysRevB.87.174113 (2013).

[14]Ìý "Removal of Copper Vacancies in Cuprous Oxide Single Crystals Grown by the Floating Zone Method", K.B. Chang, L. Frazer, J.J. Schwartz, J.B. Ketterson, and K.R. Poeppelmeier, Crystal Growth & Design, 13, 4914, doi:10.1021/cg401081m (2013).

[15]Ìý "Polymorphism, band-structure, band-lineup, and alloy energetics of the group II oxides and sulfides MgO, ZnO, CdO, MgS, ZnS, CdS", S. Lany, Proceedings of SPIE 8987, (Oxide-based Materials and Devices) doi: (2014).

[16] “Variations of ionization potential and electron affinity as a function of surface orientation: The case of orthorhombic SnS", V. Stevanovic, K. Hartman, R. Jaramillo, S. Ramanathan, T. Buonassis, and P. Graf, Applied Physics Letters, 104, 211603, doi:10.1063/1.4879558 (2014).

Ìý[17] "Modeling amorphous thin films: Kinetically limited minimization", P. Zawadzki, J.D. Perkins, and S. Lany, Physical Review B, 90, 094203, doi:10.1103/PhysRevB.90.094203 (2014).

[18]Ìý "Evaluation of defects in cuprous oxide through exciton luminescence imaging", L. Frazer, E.J. Lenferink, K.B. Chang, K.R. Poeppelmeier, N.P. Stern, and J.B. Ketterson, J. Luminenscence, 159, 294, doi:10.1016/j.jlumin.2014.11.035 (2015).

B. Modality 1: (Configurational design, Inverse Band Structure)Ìý [1]-[5]

Published

[1]ÌýÌýÌý "Genomic Design of Strong Direct-Gap Optical Transition in Si/Ge Core/Multishell Nanowires", L. Zhang, M. d'Avezac, J.W. Luo, and A. Zunger, Nano Letter, 12, 984, doi:10.1021/nl2040892 (2012).

[2]ÌýÌýÌý "Genetic-algorithm discovery of a direct-gap and optically-allowed superstructure from indirect-gap Si and Ge semiconductors", M. d'Avezac, J.W. Luo, T. Chanier, and A. Zunger, Phys. Rev. Lett., 108, 027401, doi:10.1103/PhysRevLett.108.027401 (2012).

[3]ÌýÌýÌý "Mapping the orbital wavefunction of the surface states in three-dimensional topological insulators", Y. Cao, J.A. Waugh, X.W. Zhang, J.W. Luo, Q. Wang, T.J. Reber, S.K. Mo, Z. Xu, A. Yang, J. Schneeloch, G. Gu, M. Brahlek, N. Bansal, S. Oh, A. Zunger, and D.S. Dessau, Nature Physics, 9, 499, doi:10.1038/NPHYS2685 (2013).

[4]ÌýÌýÌý "Genetic design of enhanced valley splitting towards a spin qubit in silicon", L. Zhang, J.W. Luo, A. Saraiva, B. Koiller, and A. Zunger, Nature Communications, 4, 2396, doi:10.1038/ncomms3396 (2013).

[5]ÌýÌýÌý "Hidden spin polarization in inversion-symmetric bulk crystals", X. Zhang, Q. Liu, J.W. Luo, A.J. Freeman, and A. Zunger, Nature Physics, 10, 387, doi:10.1038/nphys2933 (2014).

C. Modality 2 – Design via Design metrics --TCO Spinels Ìý[1]-[17]

Published

[1]ÌýÌýÌý "Transport and band structure studies of crystalline ZnRh2O4", N. Mansourian-Hadavi, S. Wansom, N.H. Perry, A.R. Nagaraja, T.O. Mason, L.H. Ye, and A.J. Freeman, Physical Review B, 81, 075112, doi:10.1103/PhysRevB.81.075112 (2010).

[2]ÌýÌýÌý "Diagrammatic Separation of Different Crystal Structures of A(2)BX(4) Compounds Without Energy Minimization: A Pseudopotential Orbital Radii Approach", X.W. Zhang, and A. Zunger, Advanced Functional Materials, 20, 1944, doi:10.1002/adfm.200901811 (2010).

[3]ÌýÌýÌý "Simple Point-Ion Electrostatic Model Explains the Cation Distribution in Spinel Oxides", V. Stevanovic, M. d'Avezac, and A. Zunger, Physical Review Letters, 105, 075501, doi:10.1103/PhysRevLett.105.075501 (2010).

[4]ÌýÌýÌý "Universal Electrostatic Origin of Cation Ordering in A(2)BO(4) Spinel Oxides", V. Stevanovic, M. d'Avezac, and A. Zunger, Journal of the American Chemical Society, 133, 11649, doi:10.1021/ja2034602 (2011).

[5]ÌýÌýÌý "Band or polaron: The hole conduction mechanism in the p-type spinel Rh2ZnO4", A.R. Nagaraja, N.H. Perry, T.O. Mason, Y. Tang, M. Grayson, T.R. Paudel, S. Lany, and A. Zunger, J. American Ceramic Society, 95, 269, doi:10.1111/j.1551-2916.2011.04771.x6

[6]ÌýÌýÌý "Doping rules and doping prototypes in A2BO4 spinels", T.R. Paudel, A. Zakutayev, S. Lany, M. d'Avezac, and A. Zunger, Advanced Functional Materials, 21, 4493, doi:10.1002/adfm.201101469 (2011).

[7]ÌýÌýÌý "Asymmetric cation nonstoichiometry in spinels: Site occupancy in Co(2)ZnO(4) and Rh(2)ZnO(4)", T.R. Paudel, S. Lany, M. d'Avezac, A. Zunger, N.H. Perry, A.R. Nagaraja, T.O. Mason, J.S. Bettinger, Y.Z. Shi, and M.F. Toney, Physical Review B, 84, 064109, doi:10.1103/PhysRevB.84.064109 (2011).

[8]ÌýÌýÌý "Inverse design approach to hole doping in ternary oxides:Ìý Enhancing p-type conductivity in cobalt oxide spinels", J.D. Perkins, T.R. Paudel, A. Zakutayev, P.F. Ndione, P.A. Parilla, D.L. Young, S. Lany, D.S. Ginley, A. Zunger, N.H. Perry, Y. Tang, M. Grayson, T.O. Mason, J.S. Bettinger, Y.Z. Shi, and M.F. Toney, Physical Review B, 84, 205207, doi:10.1103/PhysRevB.84.205207 (2011).

[9]ÌýÌýÌý "Cation off-stoichiometry leads to high p-type conductivity and enhanced transparency in Co2ZnO4 and Co2NiO4 thin films", A. Zakutayev, T.R. Paudel, P.F. Ndione, J.D. Perkins, S. Lany, A. Zunger, and D.S. Ginley, Physical Review B, 85, 085204, doi:10.1103/PhysRevB.85.085204 (2012).

[10]Ìý "Co3O4-Co2ZnO4 spinels: The case for a solid solution", N.H. Perry, T.O. Mason, C.C. Ma, A. Navrotsky, Y.Z. Shi, J.S. Bettinger, M.F. Toney, T.R. Paudel, S. Lany, and A. Zunger, Journal of Solid State Chemistry, 190, 143, doi:10.1016/j.jssc.2012.02.022 (2012).

[11]Ìý "Highly-Tunable Nickel Cobalt Oxide as a Low-Temperature P-type Contact in Organic Photovoltaic Devices", P.F. Ndione, A. Garcia, N.E. Widjonarko, A.K. Sigdel, K.X. Steirer, D.C. Olson, P.A. Parilla, D.S. Ginley, N.R. Armstrong, R.E. Richards, E.L. Ratcliff, and J.J. Berry, Advanced Energy Materials, 3, 524, doi:10.1002/aenm.201200742 (2012).

[12]Ìý "Phase Equilibria of the Zinc Oxide – Cobalt Oxide System in Air", N.H. Perry, and T.O. Mason, J. American Ceramic Society, 96, 966, doi:10.1111/jace.12103 (2012).

[13]Ìý "Li-Doped Cr 2 MnO 4 : A New p-Type Transparent Conducting Oxide by Computational Materials Design", H. Peng, A. Zakutayev, S. Lany, T.R. Paudel, M. d'Avezac, P.F. Ndione, J.D. Perkins, D.S. Ginley, A.R. Nagaraja, N.H. Perry, T.O. Mason, and A. Zunger, Advanced Functional Materials, 23, 5267, doi:DOI: 10.1002/adfm.201300807 (2013).

[14]Ìý "Control of the Electrical Properties in Spinel Oxides by Manipulating the Cation Disorder", P.F. Ndione, Y.Z. Shi, V. Stevanovic, A. Zakutayev, S. Lany, P.A. Parilla, J.D. Perkins, J.J. Berry, D.S. Ginley, and M.F. Toney, Advanced Functional Materials, 24, 610, doi:10.1002/adfm.201302535 (2014).

[15]Ìý "Self-Doping and Electrical Conductivity in Spinel Oxides: Experimental Validation of Doping Rules", Y.Z. Shi, P.F. Ndione, L.Y. Lim, D. Sokaras, T.C. Weng, A.R. Nagaraja, A.G. Karydas, J.D. Perkins, T.O. Mason, D.S. Ginley, A. Zunger, and M.F. Toney, Chemistry of Materials, 26, 1867, doi:10.1021/cm404031k (2014).

[16]Ìý "Experimental characterization of a theoretically-designed candidate p-type transparent conducting oxide: Li-doped Cr2MnO4", A.R. Nagaraja, K.H. Stone, M.F. Toney, H. Peng, S. Lany, and T.O. Mason, Chemistry of Materials, 26, 4598, doi:10.1021/cm501974t (2014).

[17]Ìý "Sensitized Zinc Cobalt Oxide Spinel P-type Photoelectrode", C.C. Mercado, A. Zakutayev, K. Zhu, C.J. Flynn, J.F. Cahoon, and A.J. Nozik, J. Phys. Chem. C, 118, 25340, doi:10.1021/jp508153j (2014).

D. ÌýModality 2 –TCO— Non spinel materialsÌý [1]-[6]

Published

[1]ÌýÌýÌý "Using design principles to systematically plan the synthesis of candidate hole-conducting transparent oxides: Cu3VO4 and Ag3VO4 as a case study", G. Trimarchi, H. Peng, J. Im, A.J. Freeman, V. Cloet, A. Raw, K.R. Poeppelmeier, K. Biswas, S. Lany, and A. Zunger, Physical Review B, 84, 165116, doi:10.1103/PhysRevB.84.165116 (2011).

[2]ÌýÌýÌý "Semiconducting transition-metal oxides based on d(5) cations: Theory for MnO and Fe2O3", H.W. Peng, and S. Lany, Physical Review B, 85, 201202, doi:10.1103/PhysRevB.85.201202 (2012).

[3]ÌýÌý "Structural, optical and transport properties of a-and b-Ag3VO4", V. Cloet, A. Raw, K.R. Poeppelmeier, G. Trimarchi, H. Peng, J. Im, A.J. Freeman, N.H. Perry, T.O. Mason, A. Zakutayev, P.F. Ndione, D.S. Ginley, and J.D. Perkins, Chemistry of Materials, 24, 3346, doi:10.1021/cm301119c (2012).

[4]ÌýÌýÌý "Improved synthesis and characterization of the copper Lyonsite-type compound Cu4−xMo3O12", A.D. Raw, J.A. Ibers, and K.R. Poeppelmeier, J. Solid State Chemistry, 200, 165, doi:10.1016/j.jssc.2013.01.017 (2013).

[5]ÌýÌýÌý "KAg11(VO4)4 as a candidate p-type transparent conducting oxide", J. Im, G. Trimarchi, H. Peng, A.J. Freeman, V. Cloet, A. Raw, and K.R. Poeppelmeier, Journal of Chemical Physics, 138, 194703, doi:10.1063/1.4804556 (2013).

[6]ÌýÌý "Design of semiconducting tetrahedral Mn1-xZnxO alloys and their application to solar water splitting", H. Peng, P.F. Ndione, D.S. Ginley, A. Zakutayev, and S. Lany, Physical Review X, 5, 021016, doi:10.1103/PhysRevX.5.021016 (2015).

E. Modality 2: Absorbers [1]-[6]

Published

[1]ÌýÌýÌý "Iron Chalcogenide Photovoltaic Absorbers", L.P. Yu, S. Lany, R. Kykyneshi, V. Jieratum, R. Ravichandran, B. Pelatt, E. Altschul, H.A.S. Platt, J.F. Wager, D.A. Keszler, and A. Zunger, Advanced Energy Materials, 1, 748, doi:10.1002/aenm.201100351 (2011).

[2]ÌýÌýÌý "Identification of Potential Photovoltaic Absorbers Based on First-Principles Spectroscopic Screening of Materials", L.P. Yu, and A. Zunger, Phys. Rev. Lett., 108, 068701, doi:10.1103/PhysRevLett.108.068701 (2012).

[3]ÌýÌýÌý "Inverse Design of High Absorption Thin-Film Photovoltaic Materials", L. Yu, R.S. Kokenyesi, D.A. Keszler, and A. Zunger, Advanced Energy Materials, 3, 43, doi:10.1002/aenm.201200538 (2013).

[4]ÌýÌýÌý "Earth-abundant Cu-based chalcogenide semiconductors as photovoltaic absorbers", V. Itthibenchapong, R.S. Kokenyesi, A.J. Ritenour, L.N. Zakharov, S.W. Boettcher, J.F. Wager, and D.A. Keszler, J. Materials Chemistry C, 1, 657, doi:10.1039/c2tc00106c (2013).

[5]ÌýÌýÌý "Structural and electronic modification of photovoltaic SnS by alloying", J. Vidal, S. Lany, J. Francis, R. Kokenyesi, and J. Tate, Journal of Applied Physics, 115, 113507, doi:10.1063/1.4868974 (2014).

[6]ÌýÌýÌý "Design meets nature: tetrahedrite solar absorbers", J. Heo, R. Ravichandran, C.F. Reidy, J. Tate, J.F. Wager, and D.A. Keszler, Advanced Energy Materials, 5, 1401506, doi:10.1002/aenm.201401506 (2015).

F. Modality 2: Oxides-sulfides for Absorbers and TCs Ìý

G. Modality 2: Water Splitting as a design problem [1]]

Published

[1]ÌýÌýÌý "Assessing Capability of Semiconductors to Split Water Using Ionization Potentials and Electron Affinities Only", V. Stevanovic, S. Lany, D.S. Ginley, W. Tumas, and A. Zunger, Phys. Chem. Chem. Phys., 16, 3706, doi:10.1039/c3cp54589j (2014).

H. Modality 2: Thermoelectrics [1]

[1]ÌýÌýÌý "Enhanced Thermoelectric Performance of Synthetic Tetrahedrites", J. Heo, G. Laurita, S. Muir, M.A. Subramanian, and D.A. Keszler, Chemistry of Materials, 26, 2047, doi:10.1021/cm404026k (2014).

I. Modality 3 –Discovery of New Materials [1]-[6]

Published

[1]ÌýÌýÌý "Sorting Stable versus Unstable Hypothetical Compounds: The Case of Multi-Functional ABX Half-Heusler Filled Tetrahedral Structures", X.W. Zhang, L.P. Yu, A. Zakutayev, and A. Zunger, Advanced Functional Materials, 22, 1425, doi:10.1002/adfm.201102546 (2012).

[2]ÌýÌýÌý "Prediction of A(2)BX(4) metal-chalcogenide compounds via first-principles thermodynamics", X. Zhang, V. Stevanovic, M. d'Avezac, S. Lany, and A. Zunger, Physical Review B, 86, 014109, doi:10.1103/PhysRevB.86.014109 (2012).

[3]ÌýÌýÌý "Theoretical Prediction and Experimental Realization of New Stable Inorganic Materials Using the Inverse Design Approach", A. Zakutayev, X. Zhang, A.R. Nagaraja, L.P. Yu, S. Lany, T.O. Mason, D.S. Ginley, and A. Zunger, J. American Chemical Society, 135, 10048, doi:10.1021/ja311599g (2013).

[4]ÌýÌýÌý "A polarity-induced defect mechanism for conductivity and magnetism at polar-nonpolar oxide interfaces", L. Yu, and A. Zunger, Nature Communications, 5, 5118, doi:10.1038/ncomms6118 (2014).

[5]ÌýÌýÌý "Prediction and accelerated laboratory discovery of previously unknown 18-electron ABX compounds", R. Gautier, X. Zhang, L. Hu, Y. Lin, T.O. Sunde, D. Chon, L.D. Marks, K.R. Poeppelmeier, and A. Zunger, Nature Chemistry, 7, 308, doi:10.1038/NCHEM.2207 (2015).

[6]ÌýÌýÌý "Design and discovery of a novel half-Heusler transparent hole conductor made of all-metallic heavy elements", F. Yan, X. Zhang, Y.G. Yu, L. Yu, A. Nagaraja, T.O. Mason, and A. Zunger, Nature Communications, 6, 7308, doi:10.1038/ncomms8308 (2015).