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Figure 1 jARPES energy–momentum intensity plots at the 0 point for s and p photon polarizations. a, The experimental configuration, where the sample
frame is shown in red and the laboratory frame (which contains the electron detector) in blue. The sample axes can be rotated through the angle � relative
to the laboratory frame, though the normals of the sample and laboratory frames always stay aligned. The incident photon beam makes an angle of�7�

relative to the laboratory (and sample) planes and has varying polarizations ranging from full s (E field parallel to the sample plane) to full p (E field in the
orange kx–kz plane). b,c, ARPES cuts along the 0–K direction of Bi2Se3 taken with s (b) and p (c) polarization, with the sample 0–K axis lying in the kx

laboratory frame direction. Colour scale applies to b,c.

incident photons come at a glancing angle�7 � to the sample plane
and can have either p polarization (photon electric field vector,
drawn with yellow arrow, in the orange-coloured scattering plane)
or s polarization (E field perpendicular to the scattering plane).
These possibilities are illustrated in Fig. 1a. In both configurations,
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Figure 4 jOPR 













 switches sign at the Dirac point. a,d, First-principles calculation of Bi2Se3 and Bi2Te3, only showing the Dirac bands (upper/lower Dirac
cones in red/blue and yellow/purple solid lines for a and d respectively) and the bulk bands closest to the Dirac point. b, Calculated py orbital intensity at
different energies relative to the Dirac point of Bi2Se3, each summed over a window of 20 meV relative to the central energy shown on the plot. c, For each
energy relative to the Dirac point of Bi2Se3, the calculated projected py orbital intensity as a function of the sample in-plane azimuth angle (for the
definition of the azimuth angle, see b, with 0� as marked). The dashed lines are the selected cos2�=sin2� fits to the calculated py intensities shown with
solid lines. e, Calculated OPR 
 of Bi2Se3 as a function of the energy relative to the Dirac point, and f, calculated 
 of Bi2Se3 and Bi2Te3 as a function of
momentum k. Note 
 switches sign exactly at the Dirac point.

predicting that the in-plane tangential orbitals above the Dirac
point couple with a right-handed spin texture, which is opposite
to the well-known left-handed spin texture to which the out-
of-plane orbitals couple. This prediction was directly confirmed
by our orbital-selective and spin-resolved ARPES experiments25,
conclusively demonstrating the critical role of the orbital texture for
the physics of the topological insulators.

Methods
The ARPES experiments were carried out at Beamline 10.0.1 of the Advanced Light
Source, LBL. Data have been taken both from Bi2Se3 thin films and bulk samples
and have shown consistent results. The Bi2Se3 thin films were prepared using a
two-step growth method, as described in ref. 26 and Supplementary Information,
and were protected with a Se overlayer after growth, and decapped in situ by heating
in the final vacuum environment of the analysis chamber. The bulk samples were
cleaved in situ at 50 K with a base pressure better than 5�10�11 torr.

We carried out calculations for six quintuple-layer slabs of Bi2Se3 and Bi2Te3.
The orbital character of electronic states is obtained by projecting the calculated
plane-wave-based wavefunctions j nki onto spherical harmonics jJ Ri
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p orbitals (lD1) centred at the positions of the ions Ri.
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