NOAA Six Channel CRDS

The nighttime nitrogen oxides, NO3Ìýand N2O5, are reactive species that drive atmospheric chemical transformations in the dark. ÌýThe nitrate radical, NO3, has strong visible absorption bands near 662 nm. ÌýThe combination of cavity ring down spectroscopy (CRDS) at this wavelength with chemical titration via NO provides a sensitive and specificÌý¾±²Ô-²õ¾±³Ù³ÜÌýmeasurement of this compound, with sensitivity to 0.2 part per trillion by volume (pptv) in a 1-second average. ÌýThermal conversion of dinitrogen pentoxide, N2O5, in a separate channel allows for its detection with similar sensitivity.

Ìý

Ìý

Ìý

NOAA 2 Channel NO3 and N2O5 CRDS

Ìý

Ìý

Ìý

The NOAA sixÌýchannel CRDS instrument measures NO3Ìýand N2O5together with NO, NO2, NO y and O3. ÌýIt has been deployed on aircraft, ships, tall towers and at ground sitesÌýaround the world. ÌýA separate two-channel instrument the measures only NO3and N2O5has been a versatile instrument for ground-based measurements and laboratory studies, also in a number of locations worldwide.

Ìý

Ìý

Ìý

Ìý

References

Brown, S.S., H.J. An, M. Lee, J.H. Park, S.D. Lee, D.L. Fibiger, E.E. McDuffie, W.P. Dubé, N.L. Wagner, and K.E. Min, Cavity Enhanced Spectroscopy for Measurement of Nitrogen Oxides in the Anthropocene: Results from the Seoul Tower during MAPS 2015. Faraday Discussions, 2017. 200: p. 529-557.ÌýÌý

Dorn, H.P., R.L. Apodaca, S.M. Ball, T. Brauers, S.S. Brown, J.N. Crowley, W.P. Dubé, H. Fuchs, R. Häseler, U. Heitmann, R.L. Jones, A. Kiendler-Scharr, I. Labazan, J.M. Langridge, J. Meinen, T.F. Mentel, U. Platt, D. Pöhler, F. Rohrer, A.A. Ruth, E. Schlosser, G. Schuster, A.J.L. Shillings, W.R. Simpson, J. Thieser, R. Tillmann, R. Varma, D.S. Venables, and A. Wahner, Intercomparison of NO3 radical detection instruments in the atmosphere simulation chamber SAPHIR. Atmos. Meas. Tech., 2013. 6: p. 1111-1140.Ìý

Fuchs, H., W.R. Simpson, R.L. Apodaca, T. Brauers, R.C. Cohen, J.N. Crowley, H.P. Dorn, W.P. Dubé, J.L. Fry, R. Häseler, Y. Kajii, A. Kiendler-Scharr, I. Labazan, J. Matsumoto, T.F. Mentel, Y. Nakashima, F. Rohrer, A.W. Rollins, G. Schuster, R. Tillmann, A. Wahner, P.J. Wooldridge, and S.S. Brown, Comparison of N2O5 mixing ratios during NO3Comp 2007 in SAPHIR. Atmos. Meas. Tech., 2012. 5: p. 2763-2777.ÌýÌý

Wagner, N.L., W.P. Dubé, R.A. Washenfelder, C.J. Young, I.B. Pollack, T.B. Ryerson, and S.S. Brown, Diode laser-based cavity ring-down instrument for NO3, N2O5, NO, NO2 and O3 from aircraft. Atmos. Meas. Tech., 2011. 4: p. 1227-1240.ÌýÌý

Dubé, W.P., S.S. Brown, H.D. Osthoff, M.R. Nunley, S.J. Ciciora, M.W. Paris, R.J. McLaughlin, and A.R. Ravishankara, Aircraft instrument for simultaneous, in-situ measurements of NO3 and N2O5 via cavity ring-down spectroscopy. Rev. Sci. Instr., 2006. 77: p. 034101.ÌýÌý

Brown, S.S., H. Stark, and A.R. Ravishankara, Cavity ring-down spectroscopy for atmospheric trace gas detection:Ìý Application to the nitrate radical (NO3). Appl. Phys. B., 2002. 75: p. 173-182.ÌýÌý

Brown, S.S., H. Stark, S.J. Ciciora, R.J. McLaughlin, and A.R. Ravishankara, Simultaneous in-situ detection of atmospheric NO3 and N2O5 via cavity ring-down spectroscopy. Rev. Sci. Instr., 2002. 73(9): p. 3291-3301.Ìý

Brown, S.S., H. Stark, S.J. Ciciora, and A.R. Ravishankara, In-situ measurement of atmospheric NO3 and N2O5 via cavity ring-down spectroscopy. Geophys. Res. Lett., 2001. 28(17): p. 3227-3230.ÌýÌý