second messenger signaling /lab/aaron-whiteley/ en Structure and Mechanism of a Cyclic Trinucleotide-Activated Bacterial Endonuclease Mediating Bacteriophage Immunity /lab/aaron-whiteley/2020/01/06/structure-and-mechanism-cyclic-trinucleotide-activated-bacterial-endonuclease-mediating <span>Structure and Mechanism of a Cyclic Trinucleotide-Activated Bacterial Endonuclease Mediating Bacteriophage Immunity</span> <span><span>Anonymous (not verified)</span></span> <span><time datetime="2020-01-06T00:00:00-07:00" title="Monday, January 6, 2020 - 00:00">Mon, 01/06/2020 - 00:00</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/lab/aaron-whiteley/sites/default/files/styles/focal_image_wide/public/article-thumbnail/fx1_lrg_0.jpg?h=b86d5a36&amp;itok=0XcuUhPR" width="1200" height="600" alt="Graphical Abstract"> </div> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/lab/aaron-whiteley/taxonomy/term/143" hreflang="en">CD-NTase</a> <a href="/lab/aaron-whiteley/taxonomy/term/147" hreflang="en">abortive infection</a> <a href="/lab/aaron-whiteley/taxonomy/term/149" hreflang="en">bacteriophage immunity</a> <a href="/lab/aaron-whiteley/taxonomy/term/145" hreflang="en">endonuclease</a> <a href="/lab/aaron-whiteley/taxonomy/term/151" hreflang="en">second messenger signaling</a> </div> <span>Lau RK</span> <span>,&nbsp;</span> <span>&nbsp;Ye Q</span> <span>,&nbsp;</span> <span>&nbsp;Birkholz EA</span> <span>,&nbsp;</span> <span>&nbsp;Berg KR</span> <span>,&nbsp;</span> <span>&nbsp;Patel L</span> <span>,&nbsp;</span> <span>&nbsp;Mathews IT</span> <span>,&nbsp;</span> <span>&nbsp;Watrous JD</span> <span>,&nbsp;</span> <span>&nbsp;Ego K</span> <span>,&nbsp;</span> <span>&nbsp;➤Whiteley AT</span> <span>,&nbsp;</span> <span>&nbsp;Lowey B</span> <span>,&nbsp;</span> <span>&nbsp;Mekalanos JJ</span> <span>,&nbsp;</span> <span>Kranzusch PJ</span> <span>,&nbsp;</span> <span>&nbsp;Jain M</span> <span>,&nbsp;</span> <span>&nbsp;Pogliano J</span> <span>,&nbsp;</span> <span>&nbsp;Corbett KD</span> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-content-media ucb-article-content-media-above"> <div> <div class="paragraph paragraph--type--media paragraph--view-mode--default"> <div> <div class="imageMediaStyle large_image_style"> <img loading="lazy" src="/lab/aaron-whiteley/sites/default/files/styles/large_image_style/public/article-image/fx1_lrg.jpg?itok=DmyWUlXX" width="1500" height="1500" alt="Graphical Abstract"> </div> </div> </div> </div> </div> <div class="ucb-article-text d-flex align-items-center" itemprop="articleBody"> <div><p><em>Mol Cell</em>.&nbsp;2020 Jan 6. pii: S1097-2765(19)30923-2. doi: 10.1016/j.molcel.2019.12.010. [Epub ahead of print]</p> <h3>Abstract</h3> <p>Bacteria possess an array of defenses against foreign invaders, including a broadly distributed bacteriophage defense system termed CBASS (cyclic oligonucleotide-based anti-phage signaling system). In CBASS systems, a cGAS/DncV-like nucleotidyltransferase synthesizes cyclic di- or tri-nucleotide second messengers in response to infection, and these molecules activate diverse effectors to mediate bacteriophage immunity via abortive infection. Here, we show that the CBASS effector NucC is related to restriction enzymes but uniquely assembles into a homotrimer. Binding of NucC trimers to a cyclic tri-adenylate second messenger promotes assembly of a NucC homohexamer competent for non-specific double-strand DNA cleavage. In infected cells, NucC activation leads to complete destruction of the bacterial chromosome, causing cell death prior to completion of phage replication. In addition to CBASS systems, we identify NucC homologs in over 30 type III CRISPR/Cas systems, where they likely function as accessory nucleases activated by cyclic oligoadenylate second messengers synthesized by these systems' effector complexes.</p> <h3>Keywords:&nbsp;</h3> <p>CD-NTase; Endonuclease; abortive infection; bacteriophage immunity; second messenger signaling</p> <h3>Links</h3> <ul> <li>PMID:<a href="https://www.ncbi.nlm.nih.gov/pubmed/31932164" rel="nofollow">31932164</a></li> <li>DOI:<a href="https://doi.org/10.1016/j.molcel.2019.12.010" target="_blank" rel="nofollow">10.1016/j.molcel.2019.12.010</a></li> <li>BioRxiv&nbsp;doi:&nbsp;<a href="http://dx.doi.org/10.1101/694695" target="_blank" rel="nofollow">http://dx.doi.org/10.1101/694695</a></li> </ul></div> </div> </div> </div> </div> <div>Lau RK, Ye Q, Birkholz EA, Berg KR, Patel L, Mathews IT, Watrous JD, Ego K, ➤Whiteley AT, Lowey B, Mekalanos JJ, Kranzusch PJ, Jain M, Pogliano J, Corbett KD. | Mol Cell. 2020</div> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Mon, 06 Jan 2020 07:00:00 +0000 Anonymous 27 at /lab/aaron-whiteley Bacterial cGAS-like enzymes synthesize diverse nucleotide signals /lab/aaron-whiteley/2019/03/01/bacterial-cgas-enzymes-synthesize-diverse-nucleotide-signals <span>Bacterial cGAS-like enzymes synthesize diverse nucleotide signals</span> <span><span>Anonymous (not verified)</span></span> <span><time datetime="2019-03-01T00:00:00-07:00" title="Friday, March 1, 2019 - 00:00">Fri, 03/01/2019 - 00:00</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/lab/aaron-whiteley/sites/default/files/styles/focal_image_wide/public/article-thumbnail/cd-ntase_tree.png?h=4d0bd0b4&amp;itok=RbqTCtVI" width="1200" height="600" alt="CD-NTase Tree"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/lab/aaron-whiteley/taxonomy/term/153"> Spotlight Publications </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/lab/aaron-whiteley/taxonomy/term/143" hreflang="en">CD-NTase</a> <a href="/lab/aaron-whiteley/taxonomy/term/161" hreflang="en">RECON</a> <a href="/lab/aaron-whiteley/taxonomy/term/159" hreflang="en">STING</a> <a href="/lab/aaron-whiteley/taxonomy/term/163" hreflang="en">cGAS</a> <a href="/lab/aaron-whiteley/taxonomy/term/155" hreflang="en">cyclic oligonucleotides</a> <a href="/lab/aaron-whiteley/taxonomy/term/157" hreflang="en">innate immunity</a> <a href="/lab/aaron-whiteley/taxonomy/term/151" hreflang="en">second messenger signaling</a> </div> <span>➤Whiteley AT</span> <span>,&nbsp;</span> <span>&nbsp;Eaglesham JB</span> <span>,&nbsp;</span> <span>&nbsp;de Oliveira Mann CC</span> <span>,&nbsp;</span> <span>&nbsp;Morehouse BR</span> <span>,&nbsp;</span> <span>&nbsp;Lowey B</span> <span>,&nbsp;</span> <span>&nbsp;Nieminen EA</span> <span>,&nbsp;</span> <span>&nbsp;Danilchanka O</span> <span>,&nbsp;</span> <span>&nbsp;King DS</span> <span>,&nbsp;</span> <span>&nbsp;Lee ASY</span> <span>,&nbsp;</span> <span>&nbsp;Mekalanos JJ*</span> <span>,&nbsp;</span> <span>&nbsp;Kranzusch PJ*</span> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-content-media ucb-article-content-media-above"> <div> <div class="paragraph paragraph--type--media paragraph--view-mode--default"> <div> <div class="imageMediaStyle large_image_style"> <img loading="lazy" src="/lab/aaron-whiteley/sites/default/files/styles/large_image_style/public/article-image/cd-ntases_and_the_immune_system.png?itok=_6XirBnc" width="1500" height="689" alt="CD-NTases and the immune system"> </div> </div> </div> </div> </div> <div class="ucb-article-text d-flex align-items-center" itemprop="articleBody"> <div><p>*co-corresponding authors</p> <p><em>Nature</em>.&nbsp;2019 Mar;567(7747):194-199. doi: 10.1038/s41586-019-0953-5. Epub 2019 Feb 20.</p> <h3>Abstract</h3> <p>Cyclic dinucleotides (CDNs) have central roles in bacterial homeostasis and virulence by acting as nucleotide second messengers. Bacterial CDNs also elicit immune responses during infection when they are detected by pattern-recognition receptors in animal cells. Here we perform a systematic biochemical screen for bacterial signalling nucleotides and discover a large family of cGAS/DncV-like nucleotidyltransferases (CD-NTases) that use both purine and pyrimidine nucleotides to synthesize a diverse range of CDNs. A series of crystal structures establish CD-NTases as a structurally conserved family and reveal key contacts in the enzyme active-site lid that direct purine or pyrimidine selection. CD-NTase products are not restricted to CDNs and also include an unexpected class of cyclic trinucleotide compounds. Biochemical and cellular analyses of CD-NTase signalling nucleotides demonstrate that these cyclic di- and trinucleotides activate distinct host receptors and thus may modulate the interaction of both pathogens and commensal microbiota with their animal and plant hosts.</p> <h3>News and Commentaries</h3> <ul> <li><a href="https://doi.org/10.1016/j.chom.2019.03.016" target="_blank" rel="nofollow">Pyrimidines and Cyclic Trinucleotides Join the Second Messenger Symphony.</a> [<i>Cell host &amp; microbe</i>&nbsp;2019]</li> <li><a href="https://doi.org/10.1126/scisignal.aax3389" target="_blank" rel="nofollow">Diverse bacterial nucleotide signals.</a> [<em>Science Signaling</em>&nbsp;2019]</li> <li>Highlighted and discussed in&nbsp;<i>This Week In Microbiology</i>&nbsp;Podcast&nbsp;<a href="https://www.asm.org/Podcasts/TWiM/Episodes/Bacteria-send-nucleotide-signals-TWiM-206" rel="nofollow">Episode #206</a></li> </ul> <h3>Links</h3> <ul> <li>PMID:<a href="https://www.ncbi.nlm.nih.gov/pubmed/30787435" target="_blank" rel="nofollow">30787435</a></li> <li>PMCID:<a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6544370/" rel="nofollow">PMC6544370</a></li> <li>DOI:<a href="https://doi.org/10.1038/s41586-019-0953-5" target="_blank" rel="nofollow">10.1038/s41586-019-0953-5</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6544370/" rel="nofollow">Free PMC Article</a></li> </ul></div> </div> </div> </div> </div> <div>➤Whiteley AT, Eaglesham JB, de Oliveira Mann CC, Morehouse BR, Lowey B, Nieminen EA, Danilchanka O, King DS, Lee ASY, Mekalanos JJ*, Kranzusch PJ* | Nature. 2019</div> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Fri, 01 Mar 2019 07:00:00 +0000 Anonymous 9 at /lab/aaron-whiteley Cyclic di-AMP is critical for Listeria monocytogenes growth, cell wall homeostasis, and establishment of infection /lab/aaron-whiteley/2013/05/28/cyclic-di-amp-critical-listeria-monocytogenes-growth-cell-wall-homeostasis-and <span>Cyclic di-AMP is critical for Listeria monocytogenes growth, cell wall homeostasis, and establishment of infection</span> <span><span>Anonymous (not verified)</span></span> <span><time datetime="2013-05-28T00:00:00-06:00" title="Tuesday, May 28, 2013 - 00:00">Tue, 05/28/2013 - 00:00</time> </span> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/lab/aaron-whiteley/taxonomy/term/177" hreflang="en">c-di-AMP</a> <a href="/lab/aaron-whiteley/taxonomy/term/179" hreflang="en">cell wall</a> <a href="/lab/aaron-whiteley/taxonomy/term/157" hreflang="en">innate immunity</a> <a href="/lab/aaron-whiteley/taxonomy/term/151" hreflang="en">second messenger signaling</a> </div> <span>Witte CE</span> <span>,&nbsp;</span> <span>➤Whiteley AT</span> <span>,&nbsp;</span> <span>Burke TP</span> <span>,&nbsp;</span> <span>Sauer JD</span> <span>,&nbsp;</span> <span>Portnoy DA</span> <span>,&nbsp;</span> <span>Woodward JJ.</span> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-content-media ucb-article-content-media-above"> <div> <div class="paragraph paragraph--type--media paragraph--view-mode--default"> </div> </div> </div> <div class="ucb-article-text d-flex align-items-center" itemprop="articleBody"> <div><p>mBio.&nbsp;2013 May 28;4(3):e00282-13. doi: 10.1128/mBio.00282-13.</p> <h3><span>Abstract</span></h3> <p>Listeria monocytogenes infection leads to robust induction of an innate immune signaling pathway referred to as the cytosolic surveillance pathway (CSP), characterized by expression of beta interferon (IFN-β) and coregulated genes. We previously identified the IFN-β stimulatory ligand as secreted cyclic di-AMP. Synthesis of c-di-AMP in<em> L. monocytogenes</em> is catalyzed by the diadenylate cyclase DacA, and multidrug resistance transporters are necessary for secretion. To identify additional bacterial factors involved in <em>L. monocytogenes</em> detection by the CSP, we performed a forward genetic screen for mutants that induced altered levels of IFN-β. One mutant that stimulated elevated levels of IFN-β harbored a transposon insertion in the gene <em>lmo0052</em>. Lmo0052, renamed here PdeA, has homology to a cyclic di-AMP phosphodiesterase, GdpP (formerly YybT), of Bacillus subtilis and is able to degrade c-di-AMP to the linear dinucleotide pApA. Reduction of c-di-AMP levels by conditional depletion of the di-adenylate cyclase DacA or overexpression of PdeA led to marked decreases in growth rates, both in vitro and in macrophages. Additionally, mutants with altered levels of c-di-AMP had different susceptibilities to peptidoglycan-targeting antibiotics, suggesting that the molecule may be involved in regulating cell wall homeostasis. During intracellular infection, increases in c-di-AMP production led to hyperactivation of the CSP. Conditional depletion of <em>dacA</em> also led to increased IFN-β expression and a concomitant increase in host cell pyroptosis, a result of increased bacteriolysis and subsequent bacterial DNA release. These data suggest that c-di-AMP coordinates bacterial growth, cell wall stability, and responses to stress and plays a crucial role in the establishment of bacterial infection.</p> <h3>Links</h3> <ul> <li>PMID:<a href="https://www.ncbi.nlm.nih.gov/pubmed/23716572" target="_blank" rel="nofollow">23716572</a></li> <li>PMCID:<a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3663569/" rel="nofollow">PMC3663569</a></li> <li>DOI:<a href="https://doi.org/10.1128/mBio.00282-13" target="_blank" rel="nofollow">10.1128/mBio.00282-13</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3663569/" rel="nofollow">Free PMC Article</a></li> </ul></div> </div> </div> </div> </div> <div>Witte CE, Whiteley AT, Burke TP, Sauer JD, Portnoy DA, Woodward JJ. | mBio. 2013</div> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Tue, 28 May 2013 06:00:00 +0000 Anonymous 47 at /lab/aaron-whiteley