Piezoelectricity in nominally centrosymmetric phases

O a A a 🗅

Te e a l' l' da a a l'd 4b e a 41 4f e 4e ec c ŋ. P4 Pa obc at a tabel at a b 4 ad d ded P4 4 4 care. a. Ferroelastic domains within ferroelastic phases and ferale4 fe 4e a c [16,19,20,22].

b. Ferroelectriclike local polar structures within the para-electric phase. T e e e e 4 intrinsic e 24 ec c

a c 4 [6,19,26,27]. We efe 4 a 4f e e a 4 . . . crea 4 a la 4 rere.

Extrinsic versus intrinsic reasonings. A effec " e (a) al d (b) c4 d l c d e l c ec al (c ec al (c ec a) (c ec Extrinsic versus intrinsic reasonings. A effec e e 4f 4 c a (ce a c) [1]. I deed, 4 de 4 a c4 ef 4 defec ad ef a al e f c fac 4 f4 ed d f - e e a e f e 4 defec ad ef a al e f c fac 4 f4 ed d f - e e a e f e 4 f 4 c a (ce a c) [1]. T e a ef ec al a beef 4 4 ed 4 4 co d f 4 4 f f e c a [1]. O e f ec al a e

II. METHODS

Mean e el M e e e f4 ed 4 15 c4, 4 fd M18 d ffe el a e F e a e fe 4 e e c c: a BaT O₃ e c a, a BaT O₃ ce a c, e a ec.5(BaT)35.5(3Tc([)

TABLE I. C a ac e , c 2fc4f, 4 fd_1 , ed f'_1 , 4 . F eez f'_2 , e a e , T_f , a 4c a ed ef eez f'_2 , 4 f'_1 , d4 f'_2 fPNR f'_2 e a 4 , a ef 4 Ref. [41 43].

A PF. 2. Teeee Alalce a ea a ea b4 RPS ald RUS ec a.

B. How to extract the piezoelectric response from the spectra

Il RPS, becare e e c a 41 4f e a c e 41 al ce ere e a , e 4 be, e 24 e e c, e a ea 4f e 41 al ce

IV. PIEZOELECTRICITY IN NOMINALLY CENTROSYMMETRIC PHASES OF COMPOUNDS

A. RPS and RUS spectra of nominally centrosymmetric and bulk-centrosymmetric materials

FIG. 4. Peræec c l' 4ba cel 4 1 e chae a ald l' 4 ed fe 4 ec c' c a e b cel 4 1 e c d e 4 a a a a al 4 f d a l' al al a d' (a 4 ee e S), e e a Mae a [45]). RUS ec a 4 f a c 4 4 d a 4 d a 4 e e e S e e a Mae a [45]). RUS ec a 4 f a c 4 4 d a 4 e e 4 a a de ec ed l' RPS al e f 4 10^{-3} 4 $\sim 10^{-8}$ V, de 4 a a b 4 e c cel 4 V e

V. CURRENT UNDERSTANDING OF SPONTANEOUS ATOMIC-SCALE SYMMETRY BREAKING IN PARAPHASES

Te, e, abe la e, e 4fa a a e e c, a e a c 4di 4, a ... de a la e a a a le 4ba ze 4 d, 4 e beca e e a c e a a ze 4 d, 4 e. T ... l'4 le e c c l'4 de 4f a a e c c a beel 4 fe l' e d l'e e c 4 l c ... c e c a a 4 l a a 4 4 le 4 e e a a e ,

FIG. 5. C⁴, a 4¹ ⁴f RPS , ec a ⁴f fe ⁴e ec c BZT20 c⁴ ec ed 32 a¹d 84 K ab⁴ e e fe ⁴e ec c C e e , e a e T_c = 296 K.

 $1_c = 250$ k.4 a4 a $1_c = 250$ k. $1_c = 4$ a 1_c

The scenario of intrinsic symmetry breaking short-range order in paraphases without defects and polar nanostructures. We 1^{44} a positional 4ca we e bea 1^{4} i c a d, ace et ald 4c a ed a 4 a 4 a e eet b 4ca i ci a 4be 1^{4} 1 a o b c e 4 e (. 2., a d, b 4 f f c 4 (PDF) [79]), e ea e 4fet e ca e de ec 4 b 4 e e a e a f e c f i e i c a c4 e e 4 a e a d f ac 4 f. If deed, 4 local e e

ACKNOWLEDGMENTS

O.A. ac $\frac{14}{4}$ ed e e , $\frac{2}{4}$ $\frac{2}{4}$ f e Na₁ a Na $\frac{2}{4}$ As Sc el ce F4 $\frac{1}{4}$ da $\frac{2}{4}$ $\frac{1}{4}$ $\frac{2}{4}$ f C $\frac{1}{4}$ (G al N4. 51850410520). E.K.H.S. a fi ded b EPSRC (G al N4. EP/P024904/1) al d e EU' H4 $\frac{2}{4}$ 2020 $\frac{2}{4}$ and e i de e Ma e S $\frac{2}{4}$ da a-G e G al A ed el N4. 861153. G.C. fi ded b MINECO G al N4. SEV-2017-0706 al d e Gele a a de Ca al l a G al N4. 2017 SGR 579. T e 4 $\frac{2}{4}$ f OKTAY AKTAS

la, l' 141-, ez4e ec , cy a e a , Na . C4 y 1 l. 10, 1266 (2019).

- [54] J. H4[#] a[#] d D. Va[#] de b₁, F₁ = $\frac{1}{2}$ c₁ e₂ e⁴ 4f f 4ze⁴ 4[#] e 4e ec c , P . Re . B 84, 180101(R) (2011).
- [55] A. K. Ta all e ald A. S. Yi 4, Fe 4e ec ceffec l' le a, e, J. A, P ... **112**, 044103 (2012).
- N. A. S. a d l, Il e face ald i face ab za 41 4f e 4 a-za 41 l fe 4e ec c l , P 4c. Na . Acad. Sc. USA 117, 28589 (2020).
- [58] E. V. Bradad O. I. Za 4. , Caller e e ar e 4f afe 4eec c 🕅 de 4, 4 a za 4, 54. P . . S4 d Sae 10, 1121 (1968).
- [59] P. Z b 4, G. Ca a al, ald A. K. Ta al, e, Fe 4e ec c effec ¹ 4 d , A¹ 4 . Re . Ma e . Re . **43**, 387 (2013).
- [60] P. Z b 4, G. Caaal, P. R. L. Wece, A. B. ce, and J. F. Sc4 , S a \parallel -G ad e \parallel -I d ced P4 a za 4 \parallel S T O₃ S \parallel e
- C a , P . Re . Le . 99, 167601 (2007). [61] G. L., S. L., X. D., and E. Sa e, Per⁴e ec c and e ec 4 c 41 if fe 4 e a cha e a 4 4 a 4 ib 4 id-a e and d4 a i i ic 41 , A, P . Le . 114, 202901 (2019).
- [62] C. He, Z. Wall, X. L, X. Yall, X. L41, and Z.-G. Ye, [62] C. He, Z. Har, A. D., A. D., A. Har, A. D., and Z.-C. He, Se f- 4 a zed ez4e ec c and e4 effec f fe 4e ec c f e c a , Ac a Ma e . 125, 498 (2017).
 [63] W. Z 4, P. C en, Q. Pan, X. Z an, and B. C i, Lead-f ee ea a e a field from end of each each end of each en
- Ad. Ma e. 27, 6349 (2015).
- [64] E. D. ', J. Peze, S. Ka ba, E. M4 ae, ald M. R4, Rea 4^2 - e be a 4^2 4^2 f BaT O₃ c a f 4^2 ac 4^2 c e - $4^{1/2}$, d , A , P . Le . **97**, 032903 (2010). [65] A. B. a a $1^{1/2}$ -H² de , J.-H. K², A. Ma c 4 , M. G a d , a d
- K. R 2 ede, P eo 4 d fa c, fc ef fe 4 ec c afd r e af a 4 fc fa fe 4 ec c ead z c 2 fa e PbZ O₃, J. P .: C4¹/de¹. Ma e **25**, 212202 (2013). [66] B. M a 4 a, B. Ma e , C. Pa a ¹/₄ a¹/₄, T. Ma c e e , J. I ¹/₄ e ,
- M. G4, 4d 44, R. S4c, B. G. e, ald U. B. a e, H - e, eare icia al f4 a 41 l e ea 4 fe 4e ec c $PbSc_{0,5}Ta_{0,5}O_3$ a d $Pb_{0,78}Ba_{0,22}Sc_{0,5}Ta_{0,5}O_{0,5}$, P . Re. B 77, 174106 (2008).
- [67] O. A. a., E. K. H. Sa, e, S. C. 4., e., G. I. La, 41, R. W.