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ABSTRACT: Comparison of the measured absolute absorption cross section on a
per Si atom basis of plasma-synthesized Si nanocrystals (NCs) with the absorption of
bulk crystalline Si shows that while near the band edge the NC absorption is weaker
than the bulk, yet above ∼2.2 eV the NC absorbs up to 5 times more than the bulk.
Using atomistic screened pseudopotential calculations we show that this enhance-
ment arises from interface-induced scattering that enhances the quasi-direct, zero-
phonon transitions by mixing direct Γ-like wave function character into the indirect
X-like conduction band states, as well as from space confinement that broadens the
distribution of wave functions in k-space. The absorption enhancement factor
increases exponentially with decreasing NC size and is correlated with the
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tum-forbidden to momentum allowed transitions as quasi-
direct states, quantum confinement,17 surface imperfections,
and strain,18 to name a few. We thus start by discussing the
broader context of the underlying science that may lead to finite
zero phonon transition intensity in NCs made of indirect gap
solids.

As is well-known, each electronic state in translationally
periodic crystalline solids can be classified by a single band
{ϕn,k(r) = un,k(r)e

ik·r}, belonging to a distinct wavevector k and
band index n. Not surprisingly, the interband transitions
between the valence and conduction bands are nonzero only if
the wavevectors of the initial and final states are equal
(momentum allowed direct transitions) in which case the
intensity of the transition depends on the remaining factor,
being the orbital character of the initial and final state with
m o m e n t u m ( p ) t r a n s i t i o n p r o b a b i l i t y

= < | ·̂ | >
υ υ

P u e ur p r( ) ( )n n n nk k, , ,c c
, reflecting the possibility of

orbitally allowed vs orbitally forbidden transitions, associated
with the point group selection rules. In contrast with such a
relatively simple situation characterizing translationally periodic
crystals, when translational periodicity is partially or fully
removed, as is the case in nanostructures19 or random bulk
alloys,20 then quantum mixing between the bulk Bloch states is
allowed, and each nanostructure electronic state ψi,K(r) is a
superposition of the bulk Bloch functions of the underlying
perfect crystals
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belonging to a range of wavevectors k and band indices n. Note
that K is a wavevector in the mini Brillouin zone of the
superstructure, which is finite only for superstructures
remaining partially translational periodic, such as 2D quantum
wells and 1D nanowires, otherwise K ≡ 0 and the symbol is
then omittedfor example in 0D NCs. In this case the
interband transition probability includes contributions from
different wavevectors k and different band components n of the
underlying crystals:
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Here, = < | ·̂ | >
υ υ

P u e ur p r( ) ( )n n n nk k, , ,c c
is the dipole matrix of

bulk Si Bloch functions. It is well-established that the bulk Si
crystal with its underlying tetrahedral point group symmetry
has a momentum indirect bandgap transition (VBM at Γ-point
and CBM at Δ-point), which is forbidden because the one and
only nonzero expansion coefficient of the VBM is at Γ-point
but of the CBM is at Δ-point. Together with the momentum
conservation rule δkv,kc

, this leads to ̅ =P 0v c, . To obtain finite

transition intensity one could either focus on restoring
momentum conservation by coupling the right phonon to
break the condition of δkv,kc

in eq 2 (a second order phonon
assisted process which is generally weak and temperature-
dependent16
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measured.2−10,12,13,23,26 However, a direct link was rarely
established between these structural and chemical knobs and
the degree of BFC created. Here we offer a simple
computational tool that establishes such a link and in principle
offers the design of effective BFC-inducing knobs.
Theoretical Methodology Used To Establish the

Direct Transition. The idea is to compute in the first step
rather precisely the electronic structure of the NC, treating it as
a large molecule (rather than drawing its properties from a
reference effective mass description). We do so by explicitly
incorporating in the relevant Schrödinger equation

ψ ψ− ℏ ∇ + = ϵ
⎛
⎝⎜

⎞
⎠⎟m

V r r r
2

( ) ( ) ( )i i i

2
2

(3)

with the crystal potential of the NC plus its matrix, both
described as a superposition of atomic screened potentials υα of
atom type α at each atomic site Rα,n within the lattice site n:
V(r) = Σα,nυα(r − Rα,n).

27 This superposition construct
naturally includes (with atomic resolution) the positions of
all atoms in the NC as well as the explicit surface ligands of
interfaces. These define the various engineering knobs that may
control the BFC, including volume quantum confinement,
deviations from ideal Td symmetry, surface, and interface
effects, etc. This Schrödinger equation is solved numerically (in
a plane wave basis set) providing the wave functions used in eq
2 to describe the interband transition intensity. In the second
step, and for the purpose of analysis only, we expand the
numerically precise NC wave functions by a set of Bloch states
of underlying perfect Si crystal, as in eq 1. This gives us the
spectral function telling if the specific engineering degrees of
freedom used create sufficient Γ character to produce strong
absorption. It is straightforward from eq 1 that if we sum over
the bands n at a given first Brillouin zone wavevector k, we
obtain the “majority representation” decomposition of the QD
state i as20

∑ ψ= |< | >|·p u ek r( ) ( )i
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This quantity describes the amplitude of the bulk Bloch
functions at any wavevector as it mixes into the quantum state
(VBM, CBM, etc.) i and will be shown below in Figure 4. It
thus supplies a direct link between structural or chemical
engineering knobs (specified in the NC potential V(r)) and the
ensuing state mixing accomplished. An auxiliary quantity useful
for analysis is the weight functions ωi

Γ, ωi
X, and ωi

L, which are
defined by summing pi(k) over the k points contained in a
spherical region around Γ
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Thus, the absorption of the sphere is also reduced:
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Note that the derived absorption is proportional to the
volume of the nanoparticle; thus when normalized to a per Si
atom basis, the same correction factor applies for all particle
radii.

Moreover, the per Si atom normalization is more accurate
than normalizing to average NC size, since there is variability in
the NC diameter within each sample, in addition to the
inherent uncertainty in the size determination. The per Si atom
normalized optical absorption of NCs compared with (local
bulk field factor corrected) bulk c-Si is shown in Figure 3.

Comparison of NC and Bulk Absorption. We find two
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Significantly, even for larger NCs (e.g., 4 nm size) we see
appreciable Γ-component in the conduction band states.
Specifically, the presence of Γ-component exists in numerous
states below 3.4 eV (Γ−Γ transition in bulk Si). Thus, there is
increased likelihood of quasi-direct optical transitions. This
quasi-direct character can be seen in the calculated zero-
phonon optical absorption (Figure 5b) of 3 and 4 nm diameter
NCs; this calculation excludes all phonon-assisted processes,
showing only quasi-direct transitions. It is clear from these
calculations that zero-phonon transitions are allowed at much
lower energies for quantum-confined NCs than in bulk Si.

The momentum conservation law of optical transition, which
forces the band gap transition of bulk Si to be strictly forbidden,
is partially relaxed in Si NCs leading to the enhancement of
optical transition in Si NCs. This relaxation was attributed
earlier to the Heisenberg uncertainty principle Δr·Δk > 1/2,
where r is the NC radius and k is the wavevector of QD
electrons or holes.37 This is a result of space reduction in a NC
leading to a spread in momentum, a spread that induces the
possibility of the overlap of electron and hole wave function in
k-space and thus allows the optical transitions (eq 2). This
mechanism alone would predict that the k-space wave function
of the CBM (VBM) in Si NCs should be mostly centered at the
Δ-point (Γ-point) and exponentially decay away from there.
The extent of the spread is inversely proportional to the NC
size. Along with the k-space spread of wave functions, the space
confinement also increases the energy of quantized states as the
NC size is reduced (to the power of 1−2).25 Thus, the
quantum confinement should result in a power law scale of
light emission and confinement energy on NC size. These
features of space quantum confinement effects are in excellent

agreement with that of our atomistic pseudopotential calculated
results for Si NCs, as shown in Figure 5a and b.

This agreement demonstrates that the space confinement
dominates the relaxation of momentum conservation for Si
NCs. However, the space confinement effect is not the only
cause of the spread of the wave function. We propose a
mechanism, where the spread of electron and hole wave
functions arises from scattering at the interface causing Γ−X
intervalley coupling, giving an admixture of Γ-character to X-
valley dominated conduction band states, and enabling an
increase in quasi-direct transitions. This line of reasoning is
bolstered by the results of our recent work1 to reveal specific
Si/Ge superlattices (e.g., α-sequence SiGe2Si2Ge2SiGe12 super-
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conduction band states of the NC core have a mix of X- and Γ-
character. This appreciable Γ-component permits zero-phonon,
quasi-direct optical transitions in the Si NCs, at energies
between the quantum-confined band gap in NCs and the bulk
c-Si direct band gap at 3.4 eV. This helps explain the
experimentally observed enhanced absorption between ∼2.2
and 3.4 eV for quantum-confined Si NC samples.
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