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Theophilou (see also Refs. 5 and 6) has shown
that for any physical charge
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with d electrons, and the structurally complex ter-

nary semiconductor CuInSe2.

II. FOUR VIEWS ON THE TOTAL-ENERGY-
MINIMIZATION PROBLEM

A. The wave-function sampling method

and Sham have provided a particular interpreta-
tion to it, based on a wave-function variational
principle BE„,/BQ=O. This leads to the condition
for the gradient:

BEtot

Ba,j Ba,j 2
~ + VKS[«r)]

In this approach one must (i) select a trial
parameter set Ia;~] for Eq. (5) and construct the
wave functions fz(r; Ia;~ I ) of Eq. (5); (ii) construct
the density n(r) and kinetic energy T[n] from
Eqs. {3}and (4), respectively, and (iii) calculate

E„,[n, V,„,] of Eq. (1) and repeat the above steps
to obtain the minimum of E«, [nta&];V,„,] as a
function of I a,J. I.

The primary advantage of this method is that it
does not require any eigenvalue problem solving,
such as Eq. (2), and does not require that any ef-
fective potential be constructed. Hence, it is possi-
ble to deal conveniently with nonlinear parameters
and interelectronic correlation effects directly in
the wave functions. Consequently, this method has
been used extensively to calculate many-body in-
teraction energies for bosons, nuclear matter, Fer-
mi liquids, solids, ' and molecules" with the use
of nonlinear forms such as the Jastrow wave func-
tions' QI( r iz, t a,z J ) or Feenberg wave functions

Pj( r, 2, r, 2s, . . ., I a,j I ). It has also been used to
define Wannier functions for solids. ' However,
for our purpose here of treating systems with a
large number of occupied single-particle orbitals

tgj ], this method is very ineffective because it re-

quires a good search method to converge at all and
since the number of its variational parameters de-

pends on the number of occupied orbitals. It is
therefore limited, with the use of state-of-the-art
nonstochastic search algorithms, to about 100
parameters a,j. The result is that this method is
suitable for independent-particle problems only
when the number of occupied states is small (as
simultaneous minimization is required for all
single-particle orbitals g~ ) or when the wave func-
tions have a particularly simple form. Many prob-
lems in contemporary one-electron solid-state phys-
ics do not satisfy thee conditions.

B. The wave-function gradient,
or the HKS method

Since the form of the energy-minimizing poten-
tial U,„,(r ) of Eq. (2) is generally unknown, Kohn

(7a)

to be satisfied by the final SCF wave functions
g*(r). This is more commonly identified as the
Kohn-Sham (KS) single-particle equation for the
variational wave functions of the fictitious nonin-

'
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[Eq. (6)]. In Appendix A we show that this condition results in

BE„, BU,„,=0=2Re
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orbitals for d electrons and a large set of plane
waves to ensure adequate variational flexibility.
Once localized orbitals have been included, the
core states can be treated explicitly with no addi-
tional difficulty. No pseudopotential approxima-
tions are needed.

We will treat all real-space quantities (potentials,
wave functions, and charge densities) in a mixed
representation consisting of a multicenter (mc)
term and a Fourier series (FS) term. The generic
expression is

f(r) =g gf~i~(r ~~)&i~(r r)—
a l, m

B. Potential and basis sets

To describe a crystalline potential, a reasonable
first-order approximation is to represent it as a su-
perposition of atomic potentials. We use this ap-
proximation only to guide our choice of a varia-
tional form for the potential and our selection of
basis functions.



The unit-cell volume is denoted by Q and all basis
functions are normalized over the unit cell.

The atomic solution used for
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msx

nj(k, r}=nFsj(k, r)+ g g gn i J(k, r —r~)Y~ (r —P. ) .
a E=o m

Here I,„ is treated as a convergence parameter. Most of the contribution to the second term is the spheri-
cally symmetrical core charge. In many previous orthogonalized-plane-wave (OPW) calculations (e.g., Ref.
28), only the I =0 term was included. The one-state densities nj(k, r ) can then be summed with appropriate
special k-point weighting factors to get the total density, which can also be written as having a Fourier-
series and a multicenter contribution,

n(r)= ggcoj(k)nj(k, r)=nz„(r)+ggn i (r r—)Yi (r r—) . (23)

A specific G component of the total charge density is given by

n(G)=nFs(G)+pe g( i) Y—i~(G)I r drji(rG)n~i~(r) . (24)

At this point one may introduce the frozen-core
approximation when it is desired. We interpret
freezing a core state to
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n,~(r)= d r n(r+r~)
4m.

=ye nFs(G)jo(Gr)+ n 0Q(r)
6 4~

(28)

and

1, r&r

1C(r)= —1+cos m.

2

0, r, &r

r —r2

rmc —r1
r& &r&r,

(29)

where v~(G) are Fourier components of the atomic
potentials, given by Eq. (B8).

IV. SEARCHING FOR THE ENERGY
MINIMUM

are the spherically symmetrized density around ~
and a smooth cutoff function, respectively. (We
use ri =1.0 a.u. ) Different values will give dif-
ferent f~, but must give the same v„,. Given this

definition off, one can now evaluate the second
term of Eq. (26) on a regular mesh in real space
and use a fast Fourier transform to evaluate it in
6 space. Convergence can be proven with the use
of progressively finer real-space meshes until no
further improvement is obtained in the G com-
ponents.

One additional point in our method is that
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If J' ' is the Jacobian matrix (}F(p,' ')/Bp
then this
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TABLE II. Silicon band energies in eV and x-ray scattering amplitudes for various con-

vergence parameter setting. For each column, unspecified parameters are set at the standard

values as given in the text. The results of a frozen-core approximation (FCA) are given for
comparison.

State

2$

2p
r,„
I 2sv

I 15m

I2,
r„
X)„
X4„
X),
X4,

Standard

—132.5
—90.0
—11.95

0.0
2.50
3.29
7.59
7.88

—7.79
—2.90

0.57
9.99

385 pw/atom
51 pt/a. u.

24 stars

—132.5
—90.0
—11.96

0.0
2.48
3.26
7.58
7.69

—7.80
—2.87

0.53
9.96

l=o
—132.5
—90.0
—11.96

0.0
2.49
3.28
7.59
7.87

—7.80
—2.90

0.57
9.99

6 k points

—132.5
—90.0
—11.94

0.0
2.51
3.29
7.61
7.89

—7.79
—2.89

0.59
10.00

FCA

—11.94
0.0
2.50
3.28
7.60
7.90

—7.78
—2.90

0.59
9.98

Beam Scattering amplitudes (electrons per unit cell)

(111)
(220)
(311)
(222)
(400)
(331)
(422)
(332)
(511)

15.17
17.31
11.35
0.35

14.89
10.22
13.39
9.06
9.09

15.28
17.31
11.35
0.35

14.88
10.21
13.38
9.05
9.08

15.16
17.31
11.34
0.36

14.89
10.23
13.39
9.04
9.09

15.15
17.31
11.35
0.34

14.89
10.22
13.39
9.06
9.09

15.15
17.27
11.31
0.35

14.84
10.17
13.34
9.01
9.04

very stable for any basis larger than 115 plane
waves per atom. Even for 55 plane waves per
atom the maximum errors are about 0.1 electrons
for the

para3 Tf
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these states and leads to eigenvalue errors as large
as 1 eV. Similarly, freezing the Zn 3d drops this
level by about 4 eV and introduces errors in the
other bands typically of the order of 1 to 1.5 eV.
Thus, we conclude that core states can be frozen
without substantial damage, but not transition-
metal d states (even in an insulator such as ZnS).

B. Comparisons with previous results

1.4—
tO,

EO

o 1.0-
—0.8—

~ 0.6—
I
P 0.4-
40

& 0.2-
u 0.0
CO

SI

Interstitial Atom

-2.0 -1.0 0 1.0 2.0

This section is devoted to comparing our results
with those of previous calculations. We will com-
pare the silicon results with those of Hamann ob-
tained with the use of
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TABLE V. Structural parameters for CuInSe2 and convergence parameter settings for our
calculations.

Lattice type and constant Body centered tetragonal
a =10.93 a.u.
c =21.86 a.u.

Primitive lattice vectors r) ——{a,0,0)
r2 ——(O,a,0)
r3 ——(a /2, a /2, c /2}

Atomic positions

Special
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Bpn( r )=—g roJ. 2 Re[/~( r )Ops ( r ) ]

(A
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where J is the Coulomb operator 1/
~

r —r '
~

. This equation generally is not useful for evaluating J~ ' be-
cause it requires having all the eigenfunction QJ ( r ), and the double sum over double matrix elements is an
N process that usually is too expensive to be useful. However, the formula can be used as a guide for ap-
proximating J' ', as we do for the quasi-Newtonian method.

APPENDIX B: MATRIX ELEMENTS IN THE MIXED BASIS REPRESENTATION

The following formulas are used for computing overlap and Hamiltonian matrix elements:

&~'o ~@r, &
—
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charge. The density n( r ) of Eq. (810) is used to
construct a V„,( r ) by the methods of Sec. III D.

One now makes a Taylor-series expansion to in-

clude the nonspherical terms as
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