The lower of

91 Why X!ghuhy fy`Ul Uhjcb]b DVGY ei Ubhi a Xchg

Joonhee M. An, Marco Califano, Alberto Franceschetti, and Alex Zunger

Citation: The Journal of Chemical Physics %, , 164720 (2008); doi: 10.1063/1.2901022 View online: http://dx.doi.org/10.1063/1.2901022 View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/128/16?ver=pdfcov Published by the AIP Publishing

5 fh]WYg mci 'a UmVY]bhYfYghYX]b Exploring size and state dynamics in CdSe quantum dots using two-dimensional electronic spectroscopy J. Chem. Phys. % (\$, 084701 (2014); 10.1063/1.4865832

Carrier relaxation dynamics in In As /In P quantum dots Appl. Phys. Lett - & 191103 (2008); 10.1063/1.2909536

Spin-preserving ultrafast carrier capture and relaxation in InGaAs quantum dots Appl. Phys. Lett , +, 153113 (2005); 10.1063/1.2103399

Spectroscopy and carrier dynamics in CdSe self-assembled quantum dots embedded in Zn x Cd y Mg 1 – x – y Se Appl. Phys. Lett , *, 253113 (2005); 10.1063/1.1947909

Excited-state dynamics and carrier capture in InGaAs/GaAs quantum dots Appl. Phys. Lett. +-, 3320 (2001); 10.1063/1.1418035

EciedesLae ela ail i PbSe la l dissu

Joonhee M. An,¹ Marco Califano,² Alberto Franceschetti,^{1,a)} and Alex Zunger^{1,b)} ¹National Renewable Energy Laboratory, Golden, Colorado 80401, USA ²Institute of Microwaves and Photonics, School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom

INTRODUCTION

This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP 128.138.65.115 On: Tue, 14 Jul 2015 17:58:16

(L,

$$V(\mathbf{r}) \sum_{\alpha} \sum_{\mathbf{R}} v_{\alpha} (|\mathbf{r} \cdot \mathbf{R} \cdot \mathbf{d}_{\alpha}|).$$
(4)

$$(4) \begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\$$

$$\sqrt{\frac{1}{2}} \frac{m(\mathbf{r}) \cdot 1}{\sqrt{\left[1 \cdot (\pi(R ||\mathbf{r}|)/2d) + 1\right]/2}} \sqrt{\frac{1}{2}} \frac{m(\mathbf{r}) \cdot 1}{\sqrt{\frac{1}{2}} \cdot (\pi(R ||\mathbf{r}|)/2d) + 1/2}} \sqrt{\frac{1}{2}} \frac{m(\mathbf{r}) \cdot 1}{\sqrt{\frac{1}{2}} \cdot (\pi(R ||\mathbf{r}|)/2d) + 1/2}} \sqrt{\frac{1}{2}} \frac{m(\mathbf{r}) \cdot 1}{\sqrt{\frac{1}{2}} \cdot (\pi(R ||\mathbf{r}|)/2d) + 1/2}} \sqrt{\frac{1}{2}} \frac{m(\mathbf{r}) \cdot 1}{\sqrt{\frac{1}{2}} \cdot (\pi(R ||\mathbf{r}|)/2d) + 1/2}} \sqrt{\frac{1}{2}} \frac{m(\mathbf{r}) \cdot 1}{\sqrt{\frac{1}{2}} \cdot (\pi(R ||\mathbf{r}|)/2d) + 1/2}} \sqrt{\frac{1}{2}} \frac{m(\mathbf{r}) \cdot 1}{\sqrt{\frac{1}{2}} \cdot (\pi(R ||\mathbf{r}|)/2d) + 1/2}} \sqrt{\frac{1}{2}} \frac{m(\mathbf{r}) \cdot 1}{\sqrt{\frac{1}{2}} \cdot (\pi(R ||\mathbf{r}|)/2d) + 1/2}} \sqrt{\frac{1}{2}} \frac{m(\mathbf{r}) \cdot 1}{\sqrt{\frac{1}{2}} \cdot (\pi(R ||\mathbf{r}|)/2d) + 1/2}} \sqrt{\frac{1}{2}} \frac{m(\mathbf{r}) \cdot 1}{\sqrt{\frac{1}{2}} \cdot (\pi(R ||\mathbf{r}|)/2d) + 1/2}} \sqrt{\frac{1}{2}} \frac{m(\mathbf{r}) \cdot 1}{\sqrt{\frac{1}{2}} \cdot (\pi(R ||\mathbf{r}|)/2d) + 1/2}} \sqrt{\frac{1}{2}} \frac{m(\mathbf{r}) \cdot 1}{\sqrt{\frac{1}{2}} \cdot (\pi(R ||\mathbf{r}|)/2d) + 1/2}} \sqrt{\frac{1}{2}} \frac{m(\mathbf{r}) \cdot 1}{\sqrt{\frac{1}{2}} \cdot (\pi(R ||\mathbf{r}|)/2d) + 1/2}} \sqrt{\frac{1}{2}} \frac{m(\mathbf{r}) \cdot 1}{\sqrt{\frac{1}{2}} \cdot (\pi(R ||\mathbf{r}|)/2d) + 1/2}} \sqrt{\frac{1}{2}} \frac{m(\mathbf{r}) \cdot 1}{\sqrt{\frac{1}{2}} \cdot (\pi(R ||\mathbf{r}|)/2d) + 1/2}} \sqrt{\frac{1}{2}} \frac{m(\mathbf{r}) \cdot 1}{\sqrt{\frac{1}{2}} \cdot (\pi(R ||\mathbf{r}|)/2d) + 1/2}} \sqrt{\frac{1}{2}} \frac{m(\mathbf{r}) \cdot 1}{\sqrt{\frac{1}{2}} \cdot (\pi(R ||\mathbf{r}|)/2d) + 1/2}} \sqrt{\frac{1}{2}} \frac{m(\mathbf{r}) \cdot 1}{\sqrt{\frac{1}{2}} \cdot (\pi(R ||\mathbf{r}|)/2d) + 1/2}} \sqrt{\frac{1}{2}} \frac{m(\mathbf{r}) \cdot 1}{\sqrt{\frac{1}{2}} \cdot (\pi(R ||\mathbf{r}|)/2d) + 1/2}} \sqrt{\frac{1}{2}} \frac{m(\mathbf{r}) \cdot 1}{\sqrt{\frac{1}{2}} \cdot (\pi(R ||\mathbf{r}|)/2d) + 1/2}} \sqrt{\frac{1}{2}} \frac{m(\mathbf{r}) \cdot 1}{\sqrt{\frac{1}{2}} \cdot (\pi(R ||\mathbf{r}|)/2d) + 1/2}} \sqrt{\frac{1}{2}} \frac{m(\mathbf{r}) \cdot 1}{\sqrt{\frac{1}{2}} \cdot (\pi(R ||\mathbf{r}|)/2d) + 1/2}} \sqrt{\frac{1}{2}} \frac{m(\mathbf{r}) \cdot 1}{\sqrt{\frac{1}{2}} \cdot (\pi(R ||\mathbf{r}|)/2d) + 1/2}} \sqrt{\frac{1}{2}} \frac{m(\mathbf{r}) \cdot 1}{\sqrt{\frac{1}{2}} \cdot (\pi(R ||\mathbf{r}|)/2d) + 1/2}} \sqrt{\frac{1}{2}} \frac{m(\mathbf{r}) \cdot 1}{\sqrt{\frac{1}{2}} \cdot (\pi(R ||\mathbf{r}|)/2d) + 1/2}} \sqrt{\frac{1}{2}} \frac{m(\mathbf{r}) \cdot 1}{\sqrt{\frac{1}{2}} \cdot (\pi(R ||\mathbf{r}|)/2d) + 1/2}} \sqrt{\frac{1}{2}} \frac{m(\mathbf{r}) \cdot 1}{\sqrt{\frac{1}{2}} \cdot (\pi(R ||\mathbf{r}|)/2d) + 1/2}} \sqrt{\frac{1}{2}} \frac{m(\mathbf{r}) \cdot 1}{\sqrt{\frac{1}{2}} \cdot (\pi(R ||\mathbf{r}|)/2d) + 1/2}} \sqrt{\frac{1}{2}} \frac{m(\mathbf{r}) \cdot 1}{\sqrt{\frac{1}{2}} \cdot (\pi(R ||\mathbf{r}|)/2d) + 1/2}} \sqrt{\frac{1}{2}} \frac{m(\mathbf{r}) \cdot 1}{\sqrt{\frac{1}{2}} \cdot (\pi(R ||\mathbf{r}|)/2d) + 1/2}} \sqrt{\frac{1}{2}} \frac{m(\mathbf{r}) \cdot 1}{\sqrt{\frac{1}{2}} \cdot (\pi(R ||\mathbf{r}|)/2d) + 1/2}} \sqrt{\frac{1}{2}} \frac{m(\mathbf{r}) \cdot 1}{\sqrt{\frac{1$$

 $\frac{1}{\tau_A} = \frac{1}{\tau_A} = \frac{1}$

SUMMARY

