ji t f s st st t s f A - jí ys st- s st S

 $A = \frac{1}{2} - \frac{1}{2}$ (10.1103) $A = \frac{1}{2} - \frac{1}{2}$ (1.50.A, 81.05. , 81.30.

I. IN ROPIC I'M

 $\begin{array}{c} \mathcal{U} \leftarrow \mathcal{L} \leftarrow \mathcal{L} \\ \mathbf{e} \in \mathcal{L} \xrightarrow{\mathbf{f}} \mathbf{f} \xrightarrow{\mathbf{f}} \mathbf{f} \end{array} \xrightarrow{\mathbf{e} \in \mathcal{L}} \mathcal{U} = \mathcal{U} \xrightarrow{\mathcal{U}} \xrightarrow{\mathcal{U}} \mathcal{U} \xrightarrow{\mathcal{U}} \mathcal{U} \xrightarrow{\mathcal{U}} \mathcal{U} \xrightarrow{\mathcal{U}} \xrightarrow{\mathcal{U}} \mathcal{U} \xrightarrow{\mathcal{U}} \xrightarrow{\mathcal{U}} \mathcal{U} \xrightarrow{\mathcal{U}} \xrightarrow{\mathcal{U}} \mathcal{U} \xrightarrow{\mathcal{U}} \xrightarrow{\mathcal{U}} \xrightarrow{\mathcal{U}} \mathcal{U} \xrightarrow{\mathcal{U}} \xrightarrow{\mathcal{U}}$

$$H_{LDA}(\mathbf{v}) \equiv E_{\mathbf{v}}(\mathbf{v}), \{\mathbf{k}_{\mathbf{v}}, \mathbf{x}\}$$

$$2.3.$$
 $1 \sim \sqrt{4}$ of $24 \sim 2$ $2 \sim \sqrt{2}$ 24 $2 \sim 1$

 $z_{\varsigma} = \frac{N_{\delta}^{(1)}}{p^{N(1)}} \circ \varsigma_{\varsigma}$

<u>د ا__</u> الا_

$$\begin{array}{c} \frac{\mathcal{Q}_{\ell}^{k}}{\mathcal{Q}_{\ell}^{k}} D_{\ell} J_{\ell} & \frac{\mathcal{Q}_{\ell}^{k}}{\mathcal{Q}_{\ell}^{k}} \end{array} \right) = J_{\ell} |S_{\ell}, \quad |^{2}, \quad (7)$$

$$\begin{array}{c} \mathbf{u} \\ \mathbf{u} \\ \mathbf{v} \\ \mathbf$$

$$_{MBCE} = | H_{LDA}() - H_{CE}()|^2 + M, \qquad (8)$$

₩ 770

ol

01

01

035108-5

- 1

$$M = \frac{1}{2} \int_{C} |\nabla^{2}|^{2} J_{c} = \frac{\nabla^{2} t^{k}}{2} R_{c} D_{c} J_{c}^{2}$$

$$= \frac{\nabla^{2} t^{k}}{2} R_{c} D_{c} J_{c}^{2}$$

$$= \frac{\nabla^{2} t^{k}}{2} \frac{1}{2} \frac{$$

	$\begin{array}{ccc} & & & & & & & \\ z & z & z & & & & \\ z & z &$	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $) $A_{1,x}$, old $C_{1,x}$, old $C_{1,x}$, old H_C	۲_ ۲ Ol ۲ E T	н _{се-}
x	. dr. r.d	< 10)		H_{LDA}	H _{CE}
		. 02			
1/9	A_8B	$(301) A_8 B$	45.1 38.5	. 39.4	. 38.6
1/6	A_5B	$(301) A_5 B_{-}$	59.5 55.9	. 57.4	. 57.3
1/5	A_4B	201) (A_4B)	71.3 67.9	. 67.3	. 67.3
5/12	A_7B_5	$(302) A_2 B_2 A_3 B_2 A_2 B_1$	91.3 89.1	. 93.7	. 93.7
		. 03			
1/5	$A_{12}B_{3}$	$(301) A_5 BABA_6 B$	71.0 67.9	. 67.5	. 68.5
4/15	$A_{11}B_4$	$(401) A_5 BABA_4 BAB$	86.6 84.9	85.4	. 85.7
		2 , (f . 14)			
2/5	A_9B_6	$(401) A_4 B_4 A_4 BAB$	92.9 91.6	93.6	. 89.5
2/3	A_4B_8	$(302) B_5 A_2 B_3 A_2$	69.0 63.2	58.7	. 62.4
	A_2B_4	$(301) A_2 B_4$	68.6 66.4	. 59.1	. 58.4
		. 04			
2/11	A_9B_2	$(301) A_5 B A_4 B$	64.9 62.3	62.5	63.9
1/3	$A_{10}B_5$	$(401) A_4 BABA_2 BA_2 BAB$	91.9 87.8	. 87.8	. 87.9
	A_8B_4 , . 4905)	$(302) A_5 B_2 A_3 B_2$	95.7 85.4	. 91.1	. 88.2
2/5	$A_{3}B_{2}$	(110) A_2BAB	94.0 86.7	. 89.4	. 89.8
5/8	A_3B_5	$(401) B_4 A_2 B A_2$	75.6 68.2	. 64.1	. 66.6
2/3	A_4B_8	$(601) B_6 A B A_2 B A_2$	68.2 61.6	. 60.7	. 59.7
		. 05			
1/6	$A_{10}B_2$	L)	62.2 54.2	55.3	. 55.3
1/5	A_8B_2		71.5 66.5	66.5	. 67.4
1/3	A_8B_4 . 4557)	$A_3BA_2BA_3B_2$ (201)	91.2 88.8	. 91.1	. 90.4
7/12	A_5B_7	$(302) B_2 A_2 B_3 A_2 B_2 A_1$	94.4 91.9	. 74.8	. 77.2
		. 06			
1/9	$A_{18}B_2$		37.9 34.8	. 34.4	. 35.0
2/17	$A_{15}B_2$	$(401) A_{14}BAB$	43.0···· 41.4	41.0	. 41.3
4/17	$A_{13}B_4$	$(401) A_6 BABA_5 BAB$	81.5 78.9	. 79.9	. 80.4
1/2	$A_{3}B_{3}$ (. 55)	$\binom{2}{(111)} A_3 B_3$, $\gamma^{f.14}$	41.3 7.4	. 11.6	. 11.7
		. 07			
1/11	$A_{10}B$	$(301) A_{10}B_1$	32.7 31.7	. 31.4	. 32.2
2/13	$A_{11}B_2$	$(301) A_6 B A_5 B$	54.7 53.2	. 53.3	. 54.6
		\ \			

I. JE AND RANGE OF IN ERAC I'M REQTIRED FOR DE CRIBING L

At $_{2}$ $(L1_{2})$ L f $(12_{2}, D0_{22}, D0_{23})$ L $(12_{2}, K_{2}, K$

 $= \frac{1}{2} \cdot \frac$

Id f . < 🗢 1 ,01 Οl s Ik 1e hog t • 01 1 2-5 k k <u>1</u> **-**=1. $\gamma^{f} \cdot \frac{11}{2}$ 11 $=1 \frac{2}{7} \frac{1}{2} \frac$ 2. Illustrating the outer-loop history f d $\begin{pmatrix} A & ot & = 1. \\ CE & Ot & = 1. \end{pmatrix}$ kc <u>1</u> ∠f i) fí ĽDA / 2n t° ⇔ L W. 01 -A__ (f $f_{112} = c_{12} t_{1} c_{2}$ 0, 1 k 1-L_ At_{2 2} ∧ 1 f t i , _ "s c it t i < 1 01 t. 1 01 4 1 00 1 1_f 01 * 11 - - t-A), ., =1 🀅 .__ A 1_1_f 2 11 11 ; 0_1 11 (0. f 11.4_ -<_ 01) N 🗰 🦯 dhan han a bar of see th 1 54 5 in the second $\begin{array}{c} A_{2,8} & [301)A_8B \\ A_{2,8} & [301)A_8B \\ \end{array}], \quad A_{2,5} & \begin{array}{c} A_{2,5} \\ \end{array} & \begin{array}{c} A_{2,5} \end{array} & \begin{array}{c} A_{2,5} \\ \end{array} & \begin{array}{c} A_{2,5} \\ \end{array} & \begin{array}{c} A_{2,5} \end{array} & \end{array} & \begin{array}{c} A_{2,5} \end{array} & \begin{array}{c} A_{2,5} \end{array} & \end{array} & \begin{array}{c} A_{2,5} \end{array} & \begin{array}{c} A_{2,5} \end{array} & \end{array} & \begin{array}{c} A_{2,5} \end{array} & \begin{array}{c} A_{2,5} \end{array} & \end{array} & \end{array} & \begin{array}{c} A_{2,5} \end{array} & \begin{array}{c} A_{2,5} \end{array} & \end{array} & \begin{array}{c} A_{2,5} \end{array} & \end{array} & \begin{array}{c} A_{2,5} \end{array} & \end{array} & \end{array} & \begin{array}{c} A_{2,5} \end{array}$ `**_** < _ I < <u>1</u> 1 < _ 1 1 · - 1 w filk o f_{u} f $L1_{2}$ $\begin{bmatrix} 301 \\ A_4 B_4 \end{bmatrix}$ $A_{t_2} = 5.$ L_____d s dt i tid s f. 11, 2 $L_{1_2}/D_{2_2}/D_{2_3}$ chi ed ks 1 N=28 N=32 N=37 N = 43N = 47N = 51N=53 0. .. =1 ... =3 ...=2 ...=4 . =5 ... =6 ., =7 At ع 0% 88% 92% 62% 64% 100% 100% A-L f (L $1 D0_{23}$) A L1₂/D0₂₂/D0₂₃ 1 1 Atz 0%88%92% 62% 64% 100% 100% A-1_ i $(1 + L_1_2)$ 40%100% 100% 92% 79% 100% 100%At 3 A L12/D022/D023 + 1 0% 37% 100% 85% 79% 100% 100% At 3

S. 11. a 2 m m fill a of place is 2 do of the construction of the

3. Generic behaviors during outer-loop iterations

of 412 c_{-1} z_{-1} z_{-1} z_{-1} c_{-1} c_{-1} c

II. DI C7 I W F GR77ND- A E MDERED $\frac{1}{2}C_{1}Z^{T}RE$ IN A $1 \times 1^{3} \times 1^{3}$

 $f = \frac{f}{4} + \frac{f}{4} +$

A. $\int A_{1x} = A_{1x$ st t s

st t s

6004f 0; · • | • • | • • 1 At = 1

III. CONCL7 ION

A <u>b</u>	- ch- e -	AL_ f 11 1- 1-
$f \in t'' \circ 0$	$t = \frac{1}{2} - \frac{1}{2}$	han the for the state of the st
	_ "`< < , ~	
f o 🜆	<u> </u>	I Lach A

