Using genetic algorithms to map first-principles results to model Hamiltonians:
Application to the generalized Ising model for alloys
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The cluster expansion method provides a standard framework to map first-principles generated energies for
a few selected configurations of a binary alloy onto a finite set of pair and many-body interactions between the
alloyed elements. These interactions describe the energetics of all possible configurations of the same alloy,
which can hence be readily used to identify ground state structures and, through statistical mechanics solutions,
find finite-temperature properties. In practice, the biggest challenge is to identify the types of interactions
which are most important for a given alloy out of the many possibilities. We describe a genetic algorithm
which automates this task. To avoid a possible trapping in a locally optimal interaction set, we periodically
“lock out” persistent near-optimal cluster expansions. In this way, we identify not only the best possible
combination of interaction types but also any near-optimal cluster expansions. Our strategy is not restricted to
the cluster expansion method alone, and can be applied to select the qualitative parameter types of any other
class of complex model Hamiltonians.
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bases (plane waves; Gaussians; muffin-tin orbitals) do not
have any particular physical meaning, have different conver-
gence properties, but in the limit all produce the same varia-
tional total energy.

B. Obtain J directly or from a set of total energies Eqy(o)?

Our approach is based on the Connolly-Williams*' sug-
gestion to derive {J} from a set of quantum-mechanically
calculated total energies {Equ(c,V,)} of some ordered or
disordered configurations {a}. In principle, it is also possible
to calculate the required interaction energies J directly,*>-46
rather than extracting them from the total energies of some
configurations. The main advantage of the former approach
is that presently it is possible to compute total energies of
ordered structures Eqy(o)



inequivalent figures that extend over a nearest-neighbor
distance,** but already eleven if the maximum distance is
second nearest-neighbors, and a total of 60 inequivalent fig-
ures that span a third-nearest-neighbor distance at most. In
practice, it is well known that even third-nearest-neighbor
distances may not be enough to capture the energetics of a
binary alloy qualitatively,®”7%"! and we have ourselves en-
countered many systems in the past where a hierarchy is not
f0||owed_32,33,35,37,38

Early truncation can be grossly inaccurate,51438 missing
most (long-range) atomic relaxation effects and even quali-
tative features of a ground state hull and phase diagram. One
may still attempt to fit all necessary figures impartially by
including enough ab initio calculated input energies E(o),
but this would lead to a brute-force approach of slow con-
vergence. Van de Walle and Ceder* have shown how to make
an automated hierarchy-based approach manageable by in-
troducing leave-one-out cross-validation as a systematic cri-
terion to assess the predictive power of a CE, but some com-
putational overhead will be the price.

2. Selective approaches

An alternative approach, pursued, e.g., by Zunger
et al., 225323338 js to attempt to identify the leading interac-
tions of Eqg. (1) independent of hierarchical constraints,
simply by comparing the predictive power of many different
CE truncations for a given alloy system. In earlier papers,
this was done by fitting the numerical values of J to only a
subset of the input data and then predicting the rest, an ap-
proach more recently extended to leave-many-out cross-
validation.387273 The set of input structures is split into two
parts, one for fitting numerical values of J, and one to check
predictions made with these numerical values. The procedure
is repeated for different choices of fitting or prediction sets,
and the average prediction error is the cross-validation score
Sev In selective approaches, one sets up a pool of MBIT
from which the leading interactions are selected without hi-
erarchical constraints. We show in Fig. 1 some inequivalent
MBIT (beyond pairs, as pairs can be reliably accounted for
by a constrained fit method®>%) which we use as a standard
pool of MBIT candidates on the body-centered cubic (bcc)
lattice. Only a fraction of these MBIT are typically required,
but it is not a priori clear which few must be kept. The
overall pool is not designed according to any special prin-
ciples. Instead, it is simply an exhaustive list of all MBIT up
to a reasonable number of vertices and vertex distance, in-
cluding all three-vertex MBIT up to fifth-nearest-neighbor
distance, four-vertex MBIT up to fourth-nearest-neighbor
distance, and five- and six-vertex MBIT up to third-nearest-
neighbor distance. To ensure that the relevant physics of a
given alloy system is not limited by the chosen pool of
MBIT, the sufficient extent of the pool can be routinely
tested by including additional figures as a convergence test,
e.g., all three-body figures up to eighth-nearest-neighbor dis-
tance. Figure 1 also shows that the number of possible fig-
ures increases dramatically as longer distances and more ver-
tices are added—for instance, there are only two bcc MBIT
with a maximum vertex separation of 2, but already 14 bcc
MBIT with a maximum vertex separation of three. In the

past, the relevant MBIT were selected manually from the
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FIG. 2. Construction algorithm for a converged mixed-basis
cluster expansion.

convergence of the cluster expansion by treating certain
long-range contributions analytically.8 The MBCE-expanded
energy is written as

E(0) = AH¢(0) - Ecs(0), )

where AH; denotes the enthalpy of formation of a given,
fully relaxed alloy configuration o (A;_,B,) from the elemen-
tal solids A and B,

AHf(U) = Etot(U;Al—xBx) -(1- X)Etot(A) - XEtot(B) (3)

(all total energies are per atom). Ecg(o) is the configuration-
dependent “constituent strain energy”,® which can be calcu-
lated analytically from LDA data, and which removes a sin-
gularity from the Fourier transform of the real-space pair
interactions, J(k). Without subtracting Ecg, this singularity
would arise because AH; of a fully phase-separated configu-
ration [A;_,B,JP"™ on the same coherent underlying lattice is
nonzero: E([A1_BJP™) # (1-X)Ei(A) —XE(B), since the
lattices of elemental A and B may relax independently while
the coherent phase-separated limit remains constrained.

The construction of a verifiably predictive cluster expan-
sion for E(o) consists of two iterative loops, as visualized in
Fig. 2. The inner loop identifies the most predictive set of
interaction types to describe a given set of first-principles
calculated energies {E, pa(o)} for Ng input structures. The
measure for the predictive power of a given set of interaction
types is a leave-many-out cross-validation score’>® S, as
defined in Ref. 38. The N input structures are subdivided
into a group of N¢<<Njg structures to fit the numerical values
of the selected interaction types, and a group of N,=N;—N;s
structures which are not fitted, so that their predicted ener-
gies Ecg(o) can be compared to the known energy E, pa(o)
after the fit. This process is then repeated for b independent
subdivisions into N; fitting and N, prediction structures, until
each of the Ny input energies {E,pa(o)} was predicted at
least twice. The average overall prediction errors from this
process define
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The goal of the inner loop, then, is to identify the combina-
tion(s) of interaction types (candidate CEs) with minimal S,

The outer loop acts as a feedback loop to ensure that a
CE, identified in the inner loop for the fixed subset of Ng
structures, really possesses good predictive power for all 2N
configurations. Each candidate CE is used to search all 2N
structures for additional ground states or near-ground-state
structures gpey- Their energies E,| pa(oyew) are then evaluated
by direct LDA calculations and compared to the predicted
Ece(onew)s giving an objective estimate of the predictive
power of each candidate cluster expansion. The newly calcu-
lated {E, pa(onew)} are added to the previous input set, and
the inner loop is repeated. The outer loop iterations are con-
verged when no more significant new ground-state structures
are predicted, and all verified predicted energies agree with
their direct LDA counterparts to within a few meV. For bulk
alloys, =50 LDA input structures®®% are usually enough to
achieve convergence. The complete iterative procedure guar-
antees the identification of a well-converged truncated ex-
pansion Eqg. (1), and additionally acts as a prediction engine
for important candidate structures for ground states whose
energy must be calculated directly in LDA.

The inner loop is where the difficult search problem for
the most relevant interaction types arises, as outlined in the
introduction. This problem is manageable for pairs, whose
number increases relatively slowly with distance, and which
can therefore be treated by the constrained fit method of Ref.
6, but the number of MBIT with three or more vertices in-
creases much more rapidly with distance. The present paper
concentrates on the selection of MBIT. We thus assume a
fixed set of input structures, and always use the constrained
fit method for pair interactions. Our goal is to select the best
set of MBIT to minimize S, using a genetic algorithm. The
rest of the paper explains how this task is done.

I1l. GENETIC ALGORITHM SELECTION OF MBIT

Genetic algorithms use the biological idea of “survival
of the fittest” to find the optimum solution to a given prob-
lem. GA’s are particularly helpful when faced with strongly
correlated search spaces, where other algorithms such as the
sequential optimization of individual parameters, or methods
based on individual, random parameter “flips” (Monte Carlo)
would end up in local minima, or even fail to converge at all.
GA’s have been applied in many different settings, e.g., in
computational condensed matter physics to find the optimal
numerical values of given physical parameters such as geo-
metric structure’™"® or tight-binding parameters.”® Our
present application is different in that we aim to find the
actual shape of a cluster expansion Hamiltonian, i.e., its in-
teraction types rather than only their numerical values.

Generally, the trial solutions in a GA are encoded as
binary sequences (the “genomes”) of 0’s and 1’s (the
“genes”). Here, the objective is to pick, from a large pool, a
handful>° of MBIT to be included in a trial CE, i.e., a
truncation of Eqg. (1). A natural encoding of trial CE is a
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genome “...01110100011...” with one gene for each candi-
date MBIT in the pool, and a one (zero) denoting whether
that figure is (is not) included. Over the course of the GA, a
set of genomes is monitored over many iterations (“genera-
tions”). From one iteration to the next, “child” genomes are
created by a cross-over (“mating”) of two selected “parent”
genomes of the earlier iteration. Each gene of a child genome
takes on the value of that gene in either the first or the second
parent. If this strategy were strictly implemented, only pre-
existing “genetic” information could be proliferated in a mat-
ing step. So, if a certain MBIT (or combination) were elimi-
nated from the entire population of trial CE’s in any one
generation, this MBIT could never return later. A GA might
lose a vital piece of the optimal solution at an early stage by
accident and would later be doomed to remain stuck in a
local (but not global) optimum forever. Nature’s solution to
this dilemma is mutation. To prevent a starvation of the di-
versity of possible trial solutions, individual genes can ran-
domly be turned on or off in a newly created child genome,
similar to the random mutations of evolutionary biology. We
make the following choices [Sec. 11l A-lIl F below] to con-
trol the convergence of our particular GA.

A. Maximum number of “active” genes per genome

The “genomes” in our problem represent sets of MBIT
(i.e., figure types as opposed to numerical values J) which
are used to construct a CE. The optimized quantity is the
cross-validation score S, which measures the ability of a
given CE to predict Eqy for structures not used in the fit.
One additional measure is taken as a safeguard against over-
optimization of S;,: we impose a deliberate limit on the num-
ber Ny g of active MBIT per CE, i.e., we cap the number of
active genes (“ones”) in each genome. The development of
S¢y as a function of Ny,g may be studied to determine to what
degree an increase in the number of CE parameters still helps
improve predictive accuracy significantly.

B. Population size

The number of genomes per generation, N, determines
the amount of “genetic diversity” which is available to
spawn subsequent generations. For optimum genetic diver-
sity, we choose N, based on the number of MBIT in each
CE, Nyg, with the requirement that each MBIT appear at
least twice (possibly more often) in the initial generation.

C. Survival rate

A fraction r, of the original N, candidate genomes with
the momentary optimum fitness is retained from one genera-
tion to the next. The other genomes are replaced with chil-
dren mated from the preceding generation. For instance,
from a generation of 20 genomes with a survival rate ry
=1/2, the ten best individuals would be carried over unmodi-
fied. Ten children would be created to fill the remaining slots.

D. Mating favoritism

To create a child, two parents are randomly selected from
the existing generation. Then, one by one the genes (zeroes

and ones) of the child genome are selected from parent 1 or
parent 2. The parent with better fitness has a higher probabil-
ity of passing its genes on to the child than the less fit parent.
In this way, the preferred proliferation of “better” genetic
information is ensured.

E. Mutation rate

After each mating step, we allow each gene to be
“flipped” from zero to one or vice versa with a certain (rela-
tively low) probability. In fact, we choose this probability so
as to obtain a certain number of flips Ng;,s per genome on
average. Of course, we might accidentally end up with more
MBIT in a CE than allowed by the maximum number Ny
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FIG. 3. Identification of the
five optimum MBIT out of a pool
of 45 for the input set {Eqyaci(0)}.
(a) Development of S, as a func-
tion of GA generation number for
all trial CEs. Persistent solutions
are locked out after 50 genera-
tions. The optimum combination
of MBIT is locked out in genera-
tion 97. (b) List of the first six
locked-out “persistent” CEs, en-
coded as genomes.

in an earlier study of the alloy system Mo-Ta.3"-3 (for details
see Appendix A). This choice is advantageous because the
underlying cluster expansion describes a real alloy system. In
Refs. 37 and 38, the cluster expansion was constructed
manually and tested thoroughly, predicting physical ground
states, order-disorder transition temperatures T, short-range
order, and the random alloy enthalpy of mixing of Mo-Ta.

Figure 3(a) shows the development of S, as a function of
generation number in a typical GA run. The GA picks the
optimum five MBIT out of a pool of 45 candidates (Fig. 1),
using Npo,=27 trial CEs to truncate Eq. (1). The 13 fittest
CEs of each generation are allowed to survive into the next
generation. The mutation rate is chosen to flip one gene per
newly mated child on average, meaning that the mutation
probability is 1/45 to switch a particular MBIT off or on at
random. Since the input energies Eg,.(co) are constructed
from the known interactions of Table I, the search must se-
lect these precise MBIT, with S.,,=0. This optimum solution
is indeed obtained after 46 generations. To arrive at this re-
sult, only 657 individual combinations of MBIT were
probed, less than 1/1000 of the total space which contains of
() =1.22 million distinct possible CEs.

After the optimum CE is identified, it persists through the
subsequent iterations of the GA, and is therefore “locked
out” after 96 generations. The algorithm then continues to
probe the search space for a next best CE, and so forth.
Figure 3(b) lists the six CE’s which were locked out within
600 GA generations of this run. All six candidates share two
specific MBIT, but differ in the remaining three. In terms of
Sev» the best solution is clearly separated from the competing
possible truncations of Eq. (1). It is noteworthy that for the
selected lock-out criterion (exclude persistent solutions after

TABLE I. Interaction types and (symmetry-weighted) numerical
interaction values for bcc Mo-Ta according to Refs. 37 and 38, used
here to generate the set of configurational energies {Egyact(0)}-

Figure Vertices [excl. (0,0,0)] Numerical value (meV)
Empty and point interaction
JO -144.7
J1 +12.8
Pair interactions
1 (0.5,0.5,0.5) +108.1
2 (1,0,0) -15.7
3 (1,1,0) +23.0
4 (1.5,0.5,0.5) -3.7
5 (1,1,1) +12.0
6 (2,0,0) +3.7
7 (1.5,1.5,0.5) +6.3
8 (2,1,0) +21.2
Three-body interactions
M1 (0.5,0.5,0.5), (1,1,0) -3.7
M2 (0.5,0.5,0.5), (1.5,0.5,0.5) -21.8
M3 (0,1,1),(1.5,0.5,0.5) -5.2
M4 (1,0,0),(1,1,2) +18.1
Four-body interactions
M5 (0.5,0.5,0.5),(1,1,0), -9.8

165113-6






F above. (That these numbers are the same as for the first
lock-out in Fig. 3 is pure coincidence.) The actual optimum
solution is found second, after 159 generations, and locked
out in generation 209. Compared to the total space of (‘5‘5)
~1.22 million possibilities, again only ~=1/1000 of the so-
lution space was explored.

Figure 4(b) shows the list of locked-out trial CEs after
600 generations. Since, for actual LDA input data, there is no
exact solution, the optimum selected individuals are much
closer together in terms of S, than in the case of {Eq,,.(0)}
(Fig. 3). Still, the best solution is relatively clearly separated
from the competing possible CEs. Indeed, it coincides with
the result of our previous, much more tedious search “by
hand”3® (Table 1), yet this time with certainty that no corre-
lations between the MBIT are missed. All further locked-out
CEs share three of the optimum MBIT. It is instructive to
note that the nonoptimal solution which was locked out first
differs from the actual optimum in both remaining MBIT. Its
relative persistence is thus explained by the lower probability
of a correlated switch of two MBIT, required to reach the
actual best solution.

B. Optimizing the algorithm’s efficiency

We examine the impact of the three major scalable param-
eters, population size, survival rate, and mutation rate, on the
convergence efficiency of our algorithm. This first set of tests
is based on the input set {E...(o)} as described in Appendix



solution decreases almost as fast with N, leaving the total
number of required trial CEs almost constant. So, while it
seems slightly beneficial to sample fewer rather than more
new trial solutions per generation, the overall effect is not
dramatic.

(b) The effect of the survival rate. We set a probability of
one mutation on average per newly mated child, and N,
=27. The scatter of results is again larger than any actual
trend, but it does seem that high survival rates (down to only
one newly created CE per generation) give somewhat better
results. The GA then makes the most efficient use of the
previously acquired genetic information, since each child is
generated almost exclusively from previously accepted sur-
vivors, rather than from a parent which was itself a child in
the preceding generation, with potentially high S,

(c) The effect of the mutation rate. This governs the child-
mating process, and shows the clearly strongest effect of all
the adjustable quantities. Tested for N,,,=27 and ry=13/27,



TABLE II. Egpaei(0)

behavior for unreasonably high mutation rates [e.g., 10 mu-
tations per genome in Fig. 6(b)]. Here, the convergence is
slowed down not by trapping in local minima but by the
noise of random mutations drowning out the valuable genetic
information—the lock-out solution does not apply. For rea-
sonable mutation rates, the algorithm is now completely re-
liable.

V. PHYSICAL IMPACT

We have shown how a GA can be employed to solve a
decisive step in the construction of a CE Hamiltonian of the
form Eq. (1). Based on a set of sufficiently many configura-
tional energies {E(o)}, identify those interaction types which
promise the greatest power to predict energies of further, as
yet unknown energies for the same alloy system. During the
construction process of a CE, one may test predictions made
with these MBIT after the fact, and increase the number of
structures o for which first-principles input is available. A

completed CE then provides the ability to assess the energies
of literally millions of configurations within minutes, en-
abling both the identification of ground-state structures by
exhaustive search,?® and the evaluation of configurational av-
erages, e.g., in Monte Carlo simulations,??7 for finite-T ther-
modynamics.

In addition, the rigorous application of the lock-out crite-
rion provides physical information beyond that contained in
the optimum set of MBIT alone. With a rigorous list of near-
optimal cluster expansions, it is now possible to assess how
sensitive the physical target quantities of a cluster expansion
are against the final choice of MBIT, i.e., how reliable the
information is that we can extract from a given set of input
structures {o}inp,. As an example, we examine the A2-B2
phase transition in bcc MogysTags using canonical Monte
Carlo simulations (cell size: 16 X 16 X 16, 4000 flips per lat-
tice site and T step). Figure 7 shows the development of the
configurational heat capacity C, with decreasing simulation
temperature for the optimum selected set of MBIT in Fig.



4(b), and the three best near-optimal candidates of Fig. 4(b).
As a contrast, the result for an ad hoc hierarchy-based CE is
also shown; this CE also contains five MBIT, but they are
now the four shortest-ranged three-body interaction types
and the shortest-ranged four-body interaction type of Fig. 1.
As shown in Ref. 38 for the optimum CE, the A2-B2 transi-
tion occurs for T,~600-1000 K. C,(T) is quantitatively
very similar to the optimum CEfivegor



expect the same benefits in the construction of any general
model Hamiltonian where a system-dependent choice of pa-
rameter types must be made.
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