

Evolution of the band-gap and band-edge energies of the lattice-matched Ga In As Sb ∕ Ga Sb and Ga In As Sb ∕ In As alloys as a function of composition F HUA UJ fiž5 YI Ni bj YfžUbX < "? fcYa Yf

7 JHJHcb. >ci fbU`cZ5dd`]YX`D\ng]Mg`98ž\$(' +\$%f&\$\$) Ł/Xc]. '%\$"%\$*' #%'&\$%\$*&% J TYK cb`JbY. \Hrd.#AXI "Xc]"cf[#%\$"%\$*' #%"&\$%\$*&% J NK HUVY CZ7 CbHYbhq. \htd.#tyVhUhcb"U]d"cf[#VtbHYbh#J]d#ci fbU#Ud#, # 3j Yf1dXZVti $Di V'g\YX$ Vmh Y 5 Di V $g\Y$

Articles you may be interested in 6 JUI JU ghfUJb!a cXJZYX i UYbW UbX WbXi Whcb VUbX cZAYhg cZnJbWV YbXY ; UBž; UDž; U5qž +bBž +bDžUbX +b5qž UbX cdHWL Vck lbl cZgHUlbYX YdlHUl lU = b; UB U cmg 5dd"D\mg"@Yhl"81z('++f&\$\$&Ł/%"%\$*'#%"%}&(&--

6UbX [Udg cZ UH]W!a UHWYX fl Užabfbg B ŁU cmg 5 dd"D\mg" @Yhh'75 \check{z} &) +, f% - - Ł/%\$"%\$*' #%"%&) \$, '

6UbX cZ gYhg Uh; U=bD#5"; U=bDf\$\$% YYHY fcghfi V th fYg" UhjW'a UhWYX'hc"; U5g" 5dd"D\mg"@Yhl'73ž%\$-, f%-, k/%\$"%\$*' #%"%&\$-*

6UbX cZZgYhg Uhin Y +b5"; U5g#b5"5g f\$\$%L'\YhYfcghfi VM fYg"UhlwYa UhWYX hc'Ub +bD gi VghfUhY' $>$ "5dd"D\mg"83 \check{z}),) & f% -, \sharp /%5"%\$*' $\#$ %" * +($('$

7 UW Uncb czj UYbW!VUbX czgYlocz UltiW!a UNXYX; U+bHD#bD \YlYfcglfi WifYg UbX czGWclti_mVUff|Yf NYII \hqicZa YhU; U=bHD WcbhUWn 5dd"D\mg"@Yhl"71*2%&'%f%-+L/%\$"%\$*'#%"%6,*\$'*

Evolution of the band-gap and band-edge energies of the lattice-matched GaInAsSb/GaSb and GaInAsSb/InAs alloys as a function of composition

Rita Magri^{a)} *Instituto Nazionale per la Fisica della Materia (INFM)-S3 and Dipartimento di Fisica, Universitá di Modena e Reggio Emilia, Modena 41100, Italy* Alex Zunger *National Renewable Energy Laboratory, Golden, Colorado 80401* H. Kroemer *Department of Electrical and Computer Engineering, University of California and Santa Barbara (UCSB), Santa Barbara, California 93106*

Recei ed 29 November 2004; accepted 8 Jul_y 2005; published online 16 August 2005

Using atomistic pseudopotential calculations e predict the evolution of the alence-band ma imum energ_y E , and conduction-band minimum energy E , for a compositionally graded quaternar_y Ga₁₃ In As Sb₁₃ allo_y lattice matched to GaSb or InAs as a function of , or, equivalently, as a function of distance from the substrate. We, nd upward-concave bowing for both *E* and *E*, in contradiction ith simple interpolative models. A transition from staggered t, pe II to broken-gap t, pe III lineup relative to GaSb is predicted to occur at $=0.81$ and $=0.92$ on a GaSb substrate, and at $=0.59$ and $=0.62$ on an InAs substrate. In the latter case, the quaternar_y allo_y has a minimum gap at =0.85 and =0.87. $\frac{2005 \text{ A}}{1}$ *I* DOI: 10.1063/1.2010621

I. INTRODUCTION

The materials belonging to the (6.1) lattice-constant famil_y of semiconductors InAs, GaSb, and AlSb are becoming increasingl, important for a large ariet, of applications, ranging from transistors both bipolar and ϕ eld-effect transistors FETs, to infrared detectors, photomi ers, resonant tunnel diodes, and superlattices for quantum cascade lasers and other applications.¹ All these heterostructure de ices inol e at least to of the three semiconductors of the family. The t o dominant properties in such heterointerfaces are the fact that: i GaAs, InAs, InSb, and GaSb ha e an unusual set of band alignments^{2,3} Fig. 1 spanning $t₃$ pe-I straddling" arrangement in GaAs/InAs, GaSb/InSb, and GaSb/GaAs, as ell as t_y pe-III broken-gap arrangement in InAs/InSb and InAs/GaSb; and ii b_i simultaneousl, adjusting the allo_s composition, in a particular fashion $=$, it is possible to maintain a_{ℓ} ed lattice constant , for the entire Ga_{13} In As Sb_{13} composition range. For e ample, one can select a function $=$ so that $\qquad \equiv \qquad_{\text{GaSb}}$, thus the allo_s can be grown lattice matched on a GaSb substrate. This can be accomplished b_j starting ith GaSb, then adding both a fraction of In and a fraction of As in a graded fashion e.g., 1% composition change per monola, er, reaching e entuall, the ternar, $InAs_{0.89}Sb_{0.11}$ hich is lattice matched to GaSb. Gi en i and ii above, it is interesting to inquire how ould the allo, band gap E , and the alence as ell as the conduction-band edges E , and E , depend on the composition , under lattice-matched conditions. To in estigate the behavior of band lineups under com-

positional grading is important: for e ample, high-speed bipolar transistors increasingl, emplo, designs in hich the energy gap in the base regions decreases from emitter to collector to speed up the \circ of minorit, carriers. In fact, the technolog_y of transistors based on Si/Ge allo_y s⁴ _y ielding the fastest Si-based transistors is entirel, based on this principle. But the amount of grading is limited b_j the severe 4% lattice mismatch bet een Si and Ge. In a GaSb-to-InAs graded base, strain can be a oided using the quaternar, s_y stem, and much larger energ, gap gradients could be em $plo₀$ ed. In order to design such a de ice, however, it is essential to know how exactly the energy gap aries along the

^a Electronic mail: magri@unimo.it

gradient. It is also important to determine hat ill be the nature of the bo ing up ards or do n ards of the conduction-band minimum CBM and the alence-band ma imum VBM and at hich composition, ould the s_v stem Ga₁₃ In As Sb₁₃ matched to GaSb or InAs re ert from t_y pe II staggered to t_y pe III broken gap. Would the band gap of the quaternar, have a minimum at some intermediate ? It is of fundamental importance to ans er these questions since quaternar, allo_s a different compositions pro ide the de ice engineer ith a larger quantity in the tuning of de ice characteristics such as band gaps and band offsets bet een the components. Unfortunatel, hile most of the band-structure parameters of binar, and ternar, III–V s_i stems are kno n,⁵ no analogousl_y detailed informations about the quaternar, s_i stem can be found in the literature.

The paper is organized as follo s. In Sec. II \cdot e use elasticit_y, to determine the lattice-matching condition = of the quaternar_y allo_y Ga₁₃ In As Sb₁₃ ith the substrate, GaSb or InAs, and compare the results ith the usuall, emplo, ed approimations based on Vegard's La. In Sec. III e present our atomistic empirical pseudopotential method EPM used to sol e the band structure of the narro gap quaternar, Ga₁₃ In As Sb₁₃ random allo_y. In Sec. IV e show our results for the alence- and conduction-band edges E and E as a function of the allo_y composition $=$ for Ga₁₃ In As Sb₁₃ grown both on GaSb and InAs, and compare the results ith the interpolative models idel, used b_y the de ice engineers' communit_y.⁵ In Sec. V e determine the fraction of In and of As i ia = , in the quaternar, allo, s gro n on GaSb or InAs at hich the transition from a staggered to a broken-gap lineup ith the substrate takes place. Finall, in Sec. VI e compare our theoretical predictions for band alignments and band gaps ith the a ailable e perimental data present in the literature.

II. FINDING VARIOUS SUBSTRATE-MATCHING $X = F(Y)$ **CONDITIONS**

Here e contrast Vegard-like appro i mations⁶ ith atomistic strain minimi ing predictions.

A. Vegard's law

The simplest Vegard-like approximation for a quaternary is

$$
= \tInAs + 13 \tGaAs + 13 \tInSb + 13
$$

13 \t_{GaSb}.

The condition $, \equiv ,$ ith $=$ $_{\text{GaSb}}$ or ith $=$ InAs leads to the function $=$ Vegard for hich Ga₁₃ In As Sb_{13} is lattice-matched to GaSb. Other approimations include the linear $=0.89$ rule obtained b_y considering the quaternar_y allo_y Ga₁₃ In As Sb₁₃ as the solid solution⁵ of GaSb and the lattice-matched ternar_y $InAs_{0.89}Sb_{0.11}$ allo_y, that is GaSb InAs

InSb+GaAs is the correct description since In–Sb plus Ga–As bonds are the majorit_y.

To decide hat atomic arrangement is thermod_y namicall, the more appropriate one for Ga₁₃ In As Sb₁₃, one can proceed as in Ref. 9 and minimi e the energy functional,

$$
E_{\text{tot}}
$$
, **R**, = 1, ..., N = E_{chem} ,
R, = 1, ..., N + E_{strain} ,
R, = 1, ..., N ,

here indicates that E_{tot} , E_{chem} , and E_{strain} are functionals of the atomic congurations obtained b_y differentl_y arranging the cations Ga , In and the anions As , Sb on the *N* sites of a inc-blende lattice. In Eq. 3

$$
E_{\text{chem}} = \frac{1}{2} \qquad E \qquad 3 \; , \tag{4}
$$

here $\frac{1}{3}$ is the number of bonds of t_y pe $\frac{3}{3}$, and *E* is the

to be adjusted in order to minimi e the elastic energ_y. This leads to a strong dependence of the calculated bond lengths, bond angles, and α is at the minimum elastic energy on the initial distribution of atoms ithin the 512 unit cell. In the case of the ternar, allo, one has to adjust onl, to kind of bonds In–As and In–Sb and the three different kind of bond angles, thus the ϵ nal minimum energy configuration is less sensitive to the initial choice of the atomic positions.

To each ϵ ed In fraction, there corresponds a small range of possible As compositions for hich the quaternar, allo, is lattice matched to its substrate. B_1 a eraging o er a number of different atomic congurations e calculate the quaternar_y allo_y lattice parameter , hich satis es the matching condition ith the substrate. The lattice parameter , obtained using the atomistic calculations turns out to be different from the Vegard-like beha ior gi en b_i , Eq. 1. This is true e en in the simpler case of ternar_y allo_y s, as seen in Fig. 4 hich compares the lattice constant of the ternar_y InAs Sb₁₃ allo_y gi en b_y Vergard's la dashed line ith that obtained b_y the atomistic calculation

a eraged o er a large number of different atomic con gurations, full dots. The lattice parameter predicted b_j , the atomistic elasticit, departs from the linear Vegard trend mostl, around composition $=0.5$, here the In–As and In–Sb

, it does not have the "band-gap error" problem, ¹⁷ thus the band gaps are in good agreement ith the e perimental alues. , because of the small cutoff needed in $v \cdot \mathbf{G}$ the method is much faster computationally, and thus can treat s_y stems ith hundreds and thousands of atoms per unit cell. This is essential for the description of random allo_y s here the congurational and atomic disorder effects are releant. Such effects are often neglected b_y the irtual cr_y stal appro imation VCA currentl, emplo, ed together ith selfconsistent DFT-LDA calculations.¹⁸

FIG. 6. Comparison of: a the alence- and conduction-band edges and b band gaps of the quaternar, Ga_{13} In As Sb_{13} /GaSb allo, calculated using the Vegard-like lattice-matching functions = $_{Vegard}$ d o n ard empt_y triangles ith the = $_{VFF}$ e tracted b_y the atomistic VFF calculations full circles .

de ice application, the free passage of electrons from the InAs conduction band to the GaSb alence band could be either desirable Ohmic contacts bet een and or it could be a nuisance. The strong positive bowing of the alenceband edge found in this ork see Figs. 5–7 shows that grading should be a oided at all cost if interband transport is desirable, but ould be er_{λ} bene cial to the opposite objecti e.

To understand the une pected negative both ings of the conduction-band edges in Figs. 5 and 7 e , rst note that the_y are displa_y ed ith respect to the standard³ linear interpolation of band edges of GaSb and $InAs_{0.89}Sb_{0.11}$ for the GaSb substrate, Fig. 5, and InAs and $GaAs_{0.08}Sb_{0.92}$ for the InAs substrate, Fig. 7 . These reference materials have almost e clusi el, Ga–Sb and In–As bonds ith a er_i small percentage of In–Sb bonds for the GaSb substrate or Ga–As bonds for the InAs substrate . This choice of endpoint reference materials is different from the usual practice in ternar, allo, s, such as InAs Sb_{13} here the bo ing is aluated relati el_y to the linear interpolation InAs + 1 \mathfrak{Z}^- InSb of the t_0 o end-point materials InAs and InSb. The latter is a consistent choice since the ternar_y allo_y has the same bonds In–As and In–Sb as the end points. But in the quaternar_y allo_y Ga₁₃ In As Sb₁₃ four bonds Ga–Sb, In–As, In–Sb, and Ga–As are present, y , et they are not considered

hen the quaternar, is considered as the superposition of

FIG. 7. a

GaSb and $InAs_{0.89}Sb_{0.11}$ for the GaSb substrate or as the superposition of InAs and $GaAs_{0.08}Sb_{0.92}$ for the InAs substrate .

To illustrate how bo ing depends on reference energies, e show in Fig. 8 for the quaternar_y allo_y grown on InAs b_1 the solid circles the energ_y $E =$; of the EPMcalculated conduction-band minimum E ith respect to the conventional reference energ_y E^{TR} of

$$
E^{TR} = ; = E \text{ Ga}_{13} \text{ In As } \text{Sb}_{13} / \text{InAs } 3 E^{TR} ,
$$

here

$$
E^{TR} = E \text{ InAs} + 13 E \text{ GaAs}_{0.08} \text{Sb}_{0.92} / \text{InAs} .
$$

We see that E^{TR} 0, impl_y ing negative bo ing 0 as also seen b_i , the solid circles in Fig. 7 a. To see that this

0 is merel_y an artifact of selecting E^{TR} of Eq. 10 as a reference, ϵ also show in Fig. 8 the energy of the conduction-band minimum solid circles ith respect to the alternative reference energ_y E^{BR} of *constituents*,

$$
E^{BR} = E^{InAs} + 13 E^{GaAs} + 13 E^{InSb} + 13
$$

13 E^{GaSb} .

Gi en

$$
E^{BR} = ; = E \text{ Ga}_{13} \text{ In As } Sb_{13} / \text{InAs } 3 E^{BR} ,
$$

e see that E_c^{BR} 0, impl_y ing a bo ing 0, as normall_y e pected. Since the reference E^{BR} *E*^{TR} e see that

$$
E = E = 0 \t3 \frac{2}{+}.
$$

The parameters and for GaSb, InAs, GaAs, and InSb are gi en in Ref. 5. For the quaternar_y allo_y ith In composition and As composition e estimated the and parameters using a linear interpolation of the binar, and alues, using an e pression of the form as in Eq. 1 . We can see in Fig. 5 b that the $=0$ K translated e perimental data lie bet een the dashed line corresponding to the relation for E at $=0$ K proposed in Ref. 5 and our calculated alues, and there is a difference of the order of about 30 meV at $=0.16$ among the band-gap alues measured b_y different groups. Our calculated alues are al a_y s slightly than the e perimental data for 0.1 and the deviation between e periment and theor_y seems to increase ith increasing In and As content. Unfortunatel_y, in the energ_y range 0.30

 0.70 , here the differences bet een the predictions of the atomistic calculations and of the interpolati e schemes are larger, the quaternar, allo, presents a miscibilit, gap.²⁸ Until recentl, onl, t o lattice-matched regions ith indium content $0 \t 0.28$ and 0.70 ere successfull, grown and only for these compositions measurements of the band gaps ha^e e been performed. Reference 28 reports the measurement of a minimum gap $E = 0.34$ eV at $= 77$ K and $E = 0.26$ eV at $= 300$ K, smaller than the gap of InAs, for the quaternar, allo, ith 0.70 . Our calculations predict gaps from 0.27 to 0.35 eV in the range 0.75 in reasonable agreement ith the e perimental alues.

E perimental alues of *E* of Ga

ACKNOWLEDGMENTS

One of the authors R.M. acknowledges the European