

FIG. 1. (Color online). The density functional calculated allowed chemical potential ranges (sum of all the colored parts

$$2\Delta\mu_{\rm Al} + \Delta\mu_{\rm Cu} \leq \Delta H_f({\rm Al}_2{\rm Cu}).$$
(8)

As shown in Fig. 1, $CuAlS_2$ is unstable with respect to formation of Al_2S_3 in the upper white area of Fig. 1, i.e., under Al-rich condition, (AlS, AlCu, and Al_2Cu pose weaker constrains, and are included in the Al_2S_3 ranges in Fig. 1). CuAlS₂ is also unstable with respect to CuS or Cu₂S precipi-

FIG. 2. The formation energy ΔH vs Fermi level for CuAlS₂:Mn, CuGaS₂:Mn, CuInS₂:Mn, CuGaSe₂:Mn, and CuGaTe₂:Mn with the chemical potentials at point *M* and *N* in Fig. 1. Mn prefers to III sites at point M, independent of E_F , while it prefers the Cu site at point N only in the shaded E_F ranges. For CuGaTe₂:Mn, Mn on Cu is unstable for all E_F

IV. SITE PREFERENCE OF Mn IN CHALCOPYRITES

Having calculated the chemical potential domains for $CuAlS_2$, $CuGaS_2$, $CuInS_2$, and $CuGaSe_2$ (Fig. 1), we next discuss the site preference of Mn in these chalcopyrites. The formation enthalpy for Mn substituting either the Cu or the III sites at different charge state are calculated using a single Mn atom in a 64 atom supercell according to^{16,17}

$$\Delta H_f^{(\alpha,q)} = E(\alpha,q) - E(0) + \sum_{\alpha} n_{\alpha} (\Delta \mu_{\alpha} + \mu_{\alpha}^{\text{Solid}})$$
$$+ q(E_{VBM} + E_F), \qquad (12)$$

where $E(\alpha,q)$ and E(0) are the total energy of the supercell with and without defect α . Here $(\Delta \mu_{\alpha} + \mu_{\alpha}^{\text{Solid}})$ is the absolute value of the chemical potential of atom α . Also n_{α} is the number of atoms for each defect; $n_{\alpha} = -1$ if an atom is added, while $n_{\alpha} = 1$ if an atom is removed. E_{VBM} represents the energy of the VBM of the defect-free system (which we take from the averaged eigenvalue of special k points) and E_F is the Fermi energy relative to the E_{VBM} . The atomic structure was fully relaxed in our calculation. The relaxation energy due to Mn substitution was 20–100 meV. The total energy of charged defects in a supercell calculation includes an error due to image charge interaction from periodic boundary condition. We therefore correct $E(\alpha,q)$ up to quadrupole term according to the Makov-Payne scheme.¹⁸ The correction raised $E(\alpha,q)$ by 120 to 300 meV for both q=1 and q=-1 charge states.

The functional relations between the formation energy and chemical potentials and E_F at different charge states are listed in Table II. The site preference of Mn is determined by

- ¹⁷S.B. Zhang, S.-H. Wei, and A. Zunger, Phys. Rev. Lett. 78, 4059 (1997).
- ¹⁸G. Makov and M.C. Payne, Phys. Rev. B **51**, 4014 (1995).
- ¹⁹ Mn_{III}(0/-) means the Fermi energy at which $\Delta H(Mn_{III}, q=0) = \Delta H(Mn_{III}, q=-)$, see Fig. 2. When E_F is below $Mn_{III}(0/-)$, charges at Mn_{Cu}^+ can not be balanced since Mn_{III} is at neutral state; when E_F is beyond $Mn_{III}(0/-)$ charges at Mn_{III}^- can not be neutralized since Mn_{III}^- has more population than Mn_{Cu} .
- ²⁰M. Sugiyama, R. Nakai, and H.N.S.F. Chichibu, J. Appl. Phys. 92, 7317 (2002).
- ²¹I. Aksenov and K. Sato, Jpn. J. Appl. Phys., Part 1 **31**, 2352 (1992).
- ²²K.G. Lisunov, E. Arushanov, G.A. Thomas, E. Bucher, and J.H. Schön, Phys. Rev. Lett. 88, 047205 (2002).
- ²³B. Koscielniak-Mucha and A. Opanowicz, Phys. Status Solidi A 130, K55 (1992).

- ²⁴C. Kittel, *Introduction to Solid State Physics* 4th ed. (Wiley, New York 1971).
- ²⁵P. Villars and L. Calvert, *Pearson's Handbook of Crystallo-graphic Data for Intermetallic Phases* (American Society for Metals, Metals Park, OH, 1985), Vol. I.
- ²⁶T. Asada and K. Terakura, Phys. Rev. B 47, 15 992 (1993).
- 27 Using the same structure of Ga₂Se₃, see Ref. 28.
- ²⁸K. U5236 450.246 656.535 g1(iley)64.7(,)-292.6(N)0.1(ew)]5NymyA.98 0W73a