Anisotropy of interband transitions in InAs quantum wires: An atomistic theory
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IV. ATOMISTIC DESCRIPTION OF D,y WIRES

. . gnergiesE
The electronic structure of a nanostructure is calculate

by solving the single-particle Schrédinger equation:
w2
{——V2+V(r)]ci(r)=eici(r), (8
2m
whereV(r) is the potential an@; the energy eigenvalues. In

the effective mass approximatiom is taken as theffective
mass, andvV=V,,(r) is an external potential defining the

growth? the nanostructures are embedded in a lattice-
matched fictitious wide-gap~5.6 eV) material. This results

in large band offsets and the absence of strain between ma-
trix and wire. The atoms occupy therefore the ideal positions
of a perfect zinc-blende bulk crystal.

Due to the large number of atoms involved, we solve Eq.
(8) by using thefolded spectrum methg¥3! whereby it is
possible to calculate exactly only selected eigenstates of the
Schrédinger equation around an arbitrary reference energy
éer In this approach, E(q38) is replaced by

n2 2
- EVZ + Vps(r) + Vi~ éer| G(r)=(6 - eref)zci(r),
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which is equivalent to it in the sense that y@und stateof

Eqg. (12) coincides with the solution of E(8) with energy
closest togr. Therefore, with this method the band-edge
states can be obtained by choosing the reference energy in-
side the band gap. The minimization procedure is carried out
in a plane-wave basis set using a preconditioned conjugate-
gradients algorithm. More details on this procedure can be
found in Ref. 31. With the single-particle energies and wave
functions thus obtained, we calculate the interband transition
w=6:—¢, and dipole matrix elements:

MY =(c,|plco), (12)

wheree,, ¢, and ¢, ¢, are valence and conduction band
eigenenergies and wave functions, respectively, @ilthe
momentum operator with coordinatgs (i=x,y,z). The
emission spectrum is then calculated as a function of energy
and temperature according to

geometric confinement of the nanostructure. We use a differ- S, MY PeEs Eery)? [ 1Pg(Eery—Egy)

ent approach, whema=m, is the actua(bareg electron mass
and the microscopic pseudopotential of the systgair) is

c'v’

IYET)=C

obtained as a superposition of screened atomic potentials,
Vps(r) =Sia valr - Ri,a)r 9

wherev 4(r —R; ) is the atomic potential for an atom of type
a located at the positioR; ,. The atomic pseudopotentials
are derived from the bulk LDA screened pseudopotential and
fitted to reproduce the measured InAs bulk transition ener-
gies, deformation potentials and effective mag8ase total
potential is then expressed as

V(1) = Vodr) + Vy, (10)

whereV,, accounts for the nonlocal part of the potential and
includes the SO coupling. In this atomistic approach @y.

we set up the zinc-blende geometry of the sysfeamostruc-
ture plus its surrounding matdixn a supercell with periodic
boundary conditions. The supercell size is chosen so as to
minimize any interaction between neighboring nanostruc-
tures. This is obtained by increasing the supercell size until
the calculated electron ground state energy does not change
to within 1 meV (the hole energies converge much faster
than the electron energjesVe model LCG grown wires as
free-standing, unstrained systems. In order to simulate the
effect of an oxide coating, that is often present after the wire



B. Calculated polarizations and the role of dielectric mismatch
e ® Figures 2 and 3 show the dipole matrix elements squared
€2 ® IM[2 and the relative degree of linear polarization, for the
31 h—e (i=1,...,6 and=1,2,3 transitions with light po-
——) larized along the wire axi-polarized and perpendicular to
. ® it (x-polarized. Thex- andz-polarized matrix elements rela-
e; ) tive to the same transition are offset for clarity. The degree of
linear polarization shown was calculated from K@) con-
O N ® sidering only the anisotropy of the matrix elements but not
g2 P the dielectric constant discontinuity between wire and sur-
e, (s . oo . .
rounding materia(i.e., @=1). Indeedd=~1 in a wire covered
h]ANISOTROE’Sj OF INTERBAND TRAI‘(S}'[I;;CNS IN Bys an oxide, where thertwacmatarials V@Bsssimﬂar dielectric
_..-l-l"_'(s)fg} hy —Edp constants. In the case of a free standing wire in vacuum
) s @ («oui=1), because of the small value afin Eq. (6), the
¥ . anisotropy due to the dielectric constant discontinuity domi-
- nates over the contribution due to the matrix element aniso-
' tropy. Using our calculated matrix elements and the values of
FIG. 1. Schematics of the calculated single-particle energy Iev-«‘“_ld"6 for the InAs dlelectrl_c cqnstant ang=1, we find
els (labeled with their main angular momentum compohéot 3 ”??“ the degree of linear polarization of the fgnda_mental tran-
InAs D,y cylindrical wires with sizesi=1.2, 3.6, 9.6 nm, respec- sition h;—e, assumes values 9% for all wire dlameters .
tively. The dashed lines connect, respectively, CBM and VBM incons'de'FGd‘iOn th]e, other hand, if we a_lssume Isotropic matrix
the different wires. Only a few states are shown that were used irq:lements(M =M in Eq. (6), we obtaln.for the same s.ys-.
the calculations of the optical properties. tems the value of 96.8%. Therefore we find that, for a wire in
vacuum, the matrix element anisotropy contributes by less

0 .
with their main angular momentum component, relative to 3than 3% to the total anisotropy.

InAs wire sizes: the thinnesti=1.2 nm, the thickestd
=9.6 nm, and an intermediate siz#;3.6 nm. We see that
the energy gap and the energy splitting between the subbands Table Il summarizes the irreducible representations of the
decreases with increasing wire diameter, owing to the defirst 3 conduction and 5 valence subband<in,'° D,y and
creased size confinement effect. As we will see, this featur€,, (Ref. 2§ wires with similar sizes. In &-, wire the

is one of the causes of the different temperature behavior dbwest conduction subban@™(0) has even parity and is
the degree of linear polarization with different wire size.  singly degeneratéexcluding spif), whereas the next sub-

I\

e

Energy (eV)

|
W
T

C. Symmetry considerations

Py ]
0— [ oinmnan I E % e i
0.12 ” d=5.01mn | — 7 R B URLAECG
§ Il II” ]
~
=
L
s H < 5 '
| w 1 :“ < x10 7]
0 - .
S = < “ T e FIG. 2. (8) Matrix elements
K= ™ - E - .
I S 0 | I' Y AT squared andb) degree of linear
d ) [ 1 x1 s A x10 e :
6 polarization for the interband tran-
e z sitions  hi—eji=1, 5
5 ] =1,2,3, as a function of the tran-
'ﬁ M sition energy for thed=3.6 nm
_&{-\'2 T N InAs wire.
c
5 |
o]
&o.é"l— 4 4 i
w
I
%}m
-5 04 i
©
Dot ]
= [}
et
1 [ — M-
(s = o

- P
5




bandC)(1)



although both conduction states have mpioharacter(and
h; main (

the different angular momentum composition of the sub-
bands, which is manifested in differenforbidden transi-
tions; (ii) the fact that in continuous wires the subbands al-
ways have puré character, as opposed to atomistic wires
where, as discussed in Sec. lll, each subband receives con-
tributions from different angular momentum components.
The angular momentum selection rule is therefore relaxed in
D,y wires and formally forbidden transitions may become
weakly allowed. We find that this mixing ¢fcharacter in the
wave functions oD,y wires increases with decreasing wire
diameter (i.e., with increasing confineménend with in-
creasing subband positigie., hs and e; are more mixed
than h, and e;). This is reflected in the decrease, with in-
creasing wire diameter, of the magnitude of the optical ma-
trix elements relative to the formally angular-momentum-
forbidden transitions [compare Figs. @ and 3a)].
Furthermore the lower degree of angular momentum compo-
nent mixing ine, compared toe; is shown in the fact that,



effects in actual 1D systems are due to substantial mixing
between the four bulkg,- and the two G-,-derived valence
bands.

The next transitionh,—e,), is a G;— Gg transitions in
both D,4 andC,, wires and is therefore allowed to be polar-
ized only perpendicular to the wire axis. The—e; and the
h,— e, transitions are forbiddéfin C., QWRs, due to the
different parity of the electron and hole wave functions. As
discussed above, these transitions would be formally
(angular-momentuinforbidden in ourD,q wires as well.
However, due to the nonzete1 component ok; we find
that they are weakly allowed: the dipole matrix elements for
these transitions decrease by over one order of magnitude
with increasing wire diametdi.e., with decreasing) mixing
in &), from 2.4 nm to 9.6 nn{both becoming less than 1%
of the value of the matrix element relative to the band gager, thin wires have also a stronger mixing and therefore a
transition in thed=9.6 nm wirg. As thehz— e, transition is
only x-polarized inC-, wires, the two lowest energy transi-
tions have opposite polarizations iy, C,,, andC-, wires.

The fundamental transition is in fact polarized mainly along
the wire axis while the next allowed transition has omly
polarization in all symmetries. Thla,— e; transition, in-
stead, being a transition between t@gsubbands, can have
both polarizations: however, id - 4.8 nmD,q structures, it

is only polarized perpendicular to the wire. The polarization
component parallel to the wire axis increases from Yet@

a value which is larger than that of the perpendicular com-
ponent, when the wire diameter decreases from 9.6 nm to 3.6
nm.

Temperature dependendéfe find (Figs. 4 and ba stron-
ger temperature dependence figh, — e;) in thick wires: in
ad=9.6 nm wirer decreases by 10% with a 300 K tempera-
ture increase, compared to a 0.25% decrease id a
=1.2 nm wire, for the same temperature variation. This size
dependence of the polarization can be understood in terms of
lateral confinement effects. Due to the quantum size effect,
thin wires experience a stronger confinement than thicker
wires, which means that they have a higher kinetic energy
introduced by the confinement. As this kinetic energy is re-
sponsible for the mixing} of the valence bands at zone cen-



tion, found in Fig. 3, is masked by the broadening of the
fundamental transition in d=9.6 nm wire. In ad=1.2 nm
wire (



for [00]]- and [11]]-oriented wires they found no in-plane
anisotropy, i.e.|M*|=|MY|. For all other orientations the cal-
culated dipole matrix elements alorgandy were different.
Similarly, we find no in-plane anisotropy in the funda-
mental transition irD,4 wires. However, higher energy tran-
sitions show polarization anisotropy in the plane perpendicu-
lar to the wire axis. Figures 8 and 9 show theplane(L to
the wire axi$ anisotropy we find in thén,—e; andhs—e;
transitions inD,y QWRs, grown along th¢001] direction,
with d@ 6 nm, where the matrix element along thel(
direction is different from that along tHé.10] direction. We
see that thé,— e, transition is prevalentlf110]-polarized
with only the d=9.6 nm wire polarized alon§110]. The
opposite is true for thb;— e, transition, where the only size
for which the transition is prevalently polarized alofid.(
is d=6 nm. However thed=9.6 nm wire is found mainly
polarized along 110] and thed=6 nm wire mainly along
[110], in both transitions. In all other transitions considered
we found no anisotropy in they plane.

VI. SUMMARY

In summary we applied an atomistic, empirical pseudopo-
tential method to calculate optical transitions in free-
standing, unstrainef®01]-oriented cylindrical INAs quantum
wires with diameters in the experimentally accessible range
10-100 A. We found evidence of strong coupling of bulk
Gg,- and bulkG,

parameterg,=gs) there is no polarization anisotropy in the
plane normal to the wire axis in @-, wire.?* By including

the effect of valence-band anisotropy, Yamaguchi and 4sui
predicted a weak dependence on the wire orientation for the
polarization alongz, and a strong dependence for the polar-
ization along two perpendicular directiorsandy (both in-
plang for the fundamental transition in wires oriented in
directions different thaf001] and[111]. Furthermore, only



ANISOTROPY OF INTERBAND TRANSITIONS IN InAs

1958(1997).

15F, Vouilloz, D. Y. Oberli, M.-A. Dupertuis, A. Gustafsson,
F. Reinhardt, and E. Kapon, Phys. Rev. Lét8, 1580(1997).

163, A. Brum and G. Bastard, Superlattices Microstrudt. 443
(1988.

17p, C. Sercel and K. J. Vahala, Appl. Phys. L&, 545(1990.

18p_C. Sercel and K. J. Vahala, Phys. Rev4B 3690(1990.

19p, C. Sercel and K. J. Vahala, Phys. Rev4B 5681 (1997).

20y, Bockelmann and G. Bastard, Phys. Rev4B 1688(1992.

21A. A. Yamaguchi and A. Usui, J. Appl. Phyg8, 1361(1995.

22p_|Is, Ch. Greus, A. Forchel, V. D. Kulakovskii, N. A. Gippius,
and S. G. Tikhodeev, Phys. Rev. 8l, 4272(19995.

23E. A. Muljarov, E. A. Zhukov, V. S. Dneprovskii, and Y. Masu-
moto, Phys. Rev. B2, 7420(2000.

24M. A. Dupertuis, E. Martinet, D. Y. Oberli, and E. Kapon, Euro-
phys. Lett. 52, 420 (2000.

PHYSICAL REVIEW B 70, 165317(2004

26D, S. Citrin and Y.-C. Chang, J. Appl. Phy30, 867 (1991).

21G. Bester, S. Nair, and A. Zunger, Phys. Rev.68, 161306
(2003.

28D, S. Citrin and Y.-C. Chang, Phys. Rev. 40, 5507 (1989.

291, W. Wang and A. Zunger, Phys. Rev. 81, 17398(1995; H.
Fu and A. Zungeribid. 56, 1496(1997).

S0L. W. Wang and A. Zunger, J. Chem. Phyk00, 2394(1994; J.
Phys. Chem.98, 2158(1994.

31w Wang and A. Zunger, irsemiconductor Nanoclustersd-
ited by P. V. Kamat and D. MeiséElsevier, New York, 1996

82| . D. Landau and E. M. LifshitzElectrodynamics of Continuous
Media (Nauka, Moscow, 1992

33G. F. Koster, J. O. Dimmock, R. G. Wheeler, and H. SI&mp-
erties of the Thirty-Two Point Group@dIT Press, Cambridge,
1966.

25\W. H. Zheng, J.-B. Xia, and K. W. Cheah, J. Phys.: Condens3*We assume a matrix elemeV|? (i=||, 1) to be zero when its

Matter 9, 5105 (1997).

value is&lO"‘\M!ﬂ,hﬂz-

165317-11



