$n - \frac{n}{2} + \frac{1}{2}$

 $\mathbf{T}_{\mathbf{v}} = \mathbf{V}_{\mathbf{v}} =$

$$+ = \Delta H_f(,); \qquad (4)$$

 $\begin{array}{c} \bullet & \Delta H_{f}, \\ \bullet & \bullet & \bullet \\ \end{array}$

$$i \leq 0$$
 $(i = i ; ;);$ (5)

$$2 + 3 \leq \Delta H_f(2) ; \qquad (6)$$

$$+ M_{\rm N} \leq \Delta H_f(M_{\rm N}); \tag{7}$$

$$+2 + 4 \leq \Delta H_f(2 + 2 + 4)$$
: (8)

The set of \mathbf{f} = 16.24 \mathbf{f} = -3.61 (-3.6), -11.07 (-10:), \mathbf{f} = -16.24 \mathbf{f} O, 2 3, \mathbf{f} 2 4, \mathbf{f} O, 2 3, \mathbf{f} 4 N, \mathbf{f} O, 2 3, \mathbf{f} (.) *n*-type doping with Ga and N₂ source. Fit 1(.) $\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\$ $\mathbf{f} = \begin{bmatrix} \mathbf{f} & \mathbf{f}$

 $\Delta E_b(\ ;\ _F) = N^{(\)}_{\ \vec{N}} E_{\ \vec{N}} + N^{(\)}_{\ \vec{N}} E_{\ -} + N^{(\)}_{\ \vec{N}} E_{\ \vec{N}};$ (9)