


This was demonstrated by projecting realistically calculated (i.e., not k � p) wave func-
tions of quantum nanostructures on 3D bulk Bloch function basis [10–15], showing
that �100 G bands are often needed for a realistic expansion. One may still hope,
however, that even though such a large number of basis functions is needed in princi-
ple, in practice one may be able to re-adjust the free parameters of the small basis set
theory to match experiment. But one thing is difficult to fix (i.e., is not elegant) by re-
parameterization of the existing parameters: the correct symmetry of the object being
modeled. If one has just a small number of Bloch functions in Eq. (1), the broad and
featureless envelope functions Fn(r) cannot properly resolve the atomistic detail of the
object being modeled. Thus, the theory is “hyperopic,” noting the global shape but not the
detailed symmetry. Table 1 provides a few examples of failing to recognize the correct
symmetries. This article explains briefly these cases, and offers a natural alternative.

2. The Oscillating Eigenvalues of a Thin Film A film made of N monolayers can be
even or odd with respect to the reflection plane at its center. A continuum approach can
only tell if the film is, say, 50 �A or 52 �A thick, but not if it has an even or odd number of
monolayers. Thus, the odd–even oscillations of the film’s eigenvalues, apparent in an ato-
mistic calculation [16] (pseudopotential) of Si(001) (Fig. 1), are missed by the “far-
sighted” effective-mass approach which gives a monotonic energy vs. film thickness curve.

3. The Oscillating G–X Coupling in (AlAs)n/(GaAs)n Although small in magnitude
(VGX � 10 meV), the G–X coupling has profound consequences on the properties of the
system, leading, for example, to the appearance of indirect transitions without phonon
intervention [17, 18], to characteristic pressure-induced changes of the photolumines-
cence intensity [19, 20], to resonant tunneling in electronic transmission between GaAs
quantum wells separated by an AlAs barrier [21], and to level splitting (“avoided cross-
ing”) in the pressure-, electric field-, and magnetic field-induced G–X transition [22,
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Ta b l e 1
Summary of the atomistic symmetries of a number of nanostructure systems, along with
the higher symmetry “seen” by the k � p approach. In the k � p method the lh–hh cou-
pling potentials are zero at the zone center (whereas they are generally non-zero away
from the zone center)

System Correct
symmetry

Consequence
of symmetry

What does the standard
model see?

Film of N
monolayers

odd or even E vs. thickness oscillates no reflection symmetry,
monotonic E

GaAs/AlAs
QW or SL

D2d Vlhl,hh2 6¼ 0, Vel,hhl 6¼ 0
� lhl–hh2 anti-cross
� lhl–e2 allowed
� hh2–el allowed

Vlhl,hh2 � 0, Vel,hhl ¼ 0
(Td symmetry)

InAs/GaSb
QW or SL

C2v Vlhl,hh1 6¼ 0
� el–hhl anti-cross
� in-plane polariz. anisotropy

Vlhl,hh1 � 0
� no in-plane polarization
(Td symmetry)

Square based
pyramid

C2v � strain (110) 6¼ ð�1110Þ
� p-level splits

C4v symmetry
no in-plane polarization;
no p-level splitting
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Fig. 3. lh1 and hh2 energy levels in the re-
gion of anti-crossing in (GaAs)n/(AlAs)n
(001) superlattices [29]

Fig. 4. Anti-crossing in (InAs)n/
(GaSb)n superlattices [31]:
a) l1–hh1; b) lh1–hh2



5. The lh1–hh1 Coupling at Kk == 0 for No-Common-Atom Superlattices In no-common-
atom superlattices such as InAs/GaSb or GaAs/InP the symmetry is reduced to C2v, so
even lh1 can couple to hh1 [27, 30, 31] at Kk ¼ 0. Consequently, lh1 can anti-cross hh1
(Fig. 4) and an in-plane polarization anisotropy I110 6¼ I�1110 is evident in the lowest transi-
tion. Conventional k � p has a vanishing lh1–hh1 coupling at Kk ¼ 0, hence no polariza-
tion anisotropy. This, however, can be introduced ex post facto by hand [26, 27].

6. Quantum Dots and Piezoelectric Charges Another interesting case of failure to
recognize symmetry in standard k � p treatment concerns pyramidal quantum dots. If
one uses as a model a square-based pyramid, then the macroscopic symmetry is C4v. In
this case, continuum-like theories indicate that p-levels are not split and there is no
polarization anisotropy for the lowest e–h transition. However, if the square-based pyr-
amid is made of a zinc blende solid such as InAs, the ð110Þdirection is not equivalent to
the (�1110) direction. This reduces the symmetry to C2v [32]. In this symmetry: (a) an in-
plane polarization anisotropy emerges [32–34], i.e., the dipole element for the lowest
transition along (110) differs from that along (�1110), the polarization ratio thus being
l 6¼ 1; (b) the otherwise doubly degenerate p levels split; and (c) the s-like electron
wave function is rotated (in “anti-phase”) with the s-like hole wave function. The real,
C2v symmetry of an atomistic square-based pyramid exists already even if the dot is
unstrained, i.e., an “uncapped” freestanding InAs dot will already have this symmetry.
If a capping barrier material strains the dot (e.g., GaAs on InAs dots) the atomic re-
laxation follows the atomic symmetry. Thus, the strain will also have C2v symmetry.
(However, describing strain via continuum elasticity incorrectly gives C4v symmetry
[33].) Thus, the polarization anisotropy, the p-level splitting, and wave function anti-
phase all emerge from (a) the atomically imposed C2v symmetry of the unstrained zinc-
blende system, and (b) the atomistic strain. Effect (a) is much largerst 343.8i439.77mica2-355(the)-357anti-pm,phase



The question then is how big are piezoelectric fields in commonly grown dots? This
question is equivalent to asking whether currently grown dots have sharp and well-de-
fined edges and facets, once they are capped. The author’s impression is that most
capped dots are rather round without sharp edges, exhibiting instead segregation and
intermixing [37, 38]. Such objects (e.g., lens-shaped dots) have negligible piezoelectric
charges. Nevertheless, in an atomistic description such dots have C2v symmetry.
Although calculations for faceted ideal pyramidal dots are convenient for comparing
computational schemes, they do not have much physical reality for InAs/GaAs, whereas
rounded, interdiffused lens-shaped dots are more realistic. Such dots have virtually no
piezoelectric fields. But then k � p will predict no p-level splitting, no polarization aniso-
tropy, and no wave function anti-phase, in conflict with experiment. Pseudopotential
calculations exhibit these effects even for lens-shaped dots.

7. Keep Fitting until Agreeing with Atomistic Theory or Experiment on Dots? Another
approach taken by k � p models is to change material constants (e.g., effective masses)
until agreement with a desired set of data is achieved while fitting parameters to repro-
duce the properties of the underlying bulk solid seems reasonable, re-adjusting these
parameters to fit the measured properties of the nanostructure itself appears question-
able. For example, consider k � p calculations on CdSe dots. Norris and Bawendi [39]
say: “We use standard nonlinear least-squares method to globally fit the experimental
data . . . our fitting routine adjusts three parameters: the Luttinger band parameters g1

and g2 . . . and the potential barrier for electrons.” According to Efros et al. [40], “The



duced splitting of the electron p states (3 vs. 24 meV), (ii) an incorrect in-plane polari-
zation ratio for electron–hole dipole transitions (0.97 vs. 1.24), and (iii) an over confine-
ment of both electron (by 48 meV) and hole (by 52 meV) states, resulting in a band
gap error of 100 meV.

Similar tests for the k � p treatment were done for freestanding dots of InP passivated
with hydrogen [14]. The diameter of these dots, 30 �A–50 �A, is actually not small; it is
typical of the confining dimension (i.e., height) of most self-assembled dots. Again,
doing side-by-side k � p and pseudopotential calculations based on the same input bulk



tonian). Such potentials take the form of piezoelectric charges in dots or interfacial
charges in superlattices. The degree to which such external potentials are really physical
remains questionable. Furthermore, the values of such potential matrix elements are
not provided by the k � p model itself, but must be provided externally (unless one uses



[28] R.C. Miller, A.C. Gossard, G.D. Sanders, Y.-C. Chang, and J.N. Schulman, Phys. Rev. B 32,
R8452 (1985).

[29] R. Magri and A. Zunger, Phys. Rev. B 62, 10364 (2000).
[30] R. Magri, L.W. Wang, A. Zunger, I. Vurgaftman, and J.R. Meyer, Phys. Rev. B 61, 10235

(2000).
[31] L.W. Wang, S.H. Wei, T. Mattila, A. Zunger, I. Vurgaftman, and J.R. Meyer, Phys. Rev. B

60, 5590 (1999).
[32] J. Kim, L.W. Wang, and A. Zunger, Phys. Rev. B 57, R9408 (1998).

[33] C. Pryor, J. Kim, L.W. Wang, A. Williamson, and A. Zunger, J. Appl. Phys. 83, 2548 (1998).
[34] L.W. Wang, J. Kim, and A. Zunger, Phys. Rev. B 59, 5678 (1999).
[35] L.W. Wang, A.J. Williamson, A. Zunger, H. Jiang, and J. Singh, App. Phys. Lett. 76, 339

(2000).
[36] O. Stier, Electronic and Optical Properties of Quantum Dots and Wires, Berlin Studies in

Solid State Physics, Vol. 7, Wissenschaft & Technik Verlag, Berlin 2001.
[37] I. Kegel et al., Phys. Rev. B 63, 035318-1 (2001).
[38] J. Shumway et al., Phys. Rev. B 64, 125302 (2001).
[39] D.J. Norris and M.G. Bawendi, Phys. Rev. B 53, 16338 (1996).
[40] A. Efros, V.A. Kharchenco, and M. Rosen, Solid State Commun. 93, 281 (1995).
[41] O. Wind, F. Gindele, and U. Woggon, J. Lumin. 72–74, 300 (1997).
[42] O. Stier, R. Heitz, A. Schliwa, and D. Bimberg, phys. stat. sol. (a) 190, 477 (2002) (this vo-

lume).
[43] P.C. Sercel, A.L. Efros, and M. Rosen, Phys. Rev. Lett. 83, 7394 (1999).
[44] L.W. Wang, Phys. Rev. B 61, 7241 (2000).
[45] A. Zunger, MRS Bull. 23, 35 (1998);

phys. stat. sol. (b) 224, 727 (2001).
[46] S. Botti and L.C. Andreani, Phys. Rev. B 63, 235313 (2001).
[47] F. Chirico, A. DiCarlo, and P. Lugli, Phys. Rev. B 64, 045314 (2001).

phys. stat. sol. (a) 190, No. 2 (2002) 475




