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Calculation of the electronic properties of Mo in a first-principles nonlocal-pseudopotentiai approach
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and energies) good agreement (-10 s Hartrees) with
all-electron results is found over a large range of ex-
citation energies. We have recently applied these pseu-
dopotentials to study phase stabilities of binary solids'
and to electronic properties of semiconductors. "

In contrast to the semiempirical pseudopotential ap-
proach, 6' the first-principles pseudopotential method
does not assume any ansatz form for VI(r). In turn,
its shape both in the core and the valence regions is
automatically determined (numerically) by the max-
imum similarity and minimum kinetic energy con-
straints. We find that these potentials are strongly
repulsive in the core regions, quantitatively reflecting
the effects of the replacement of the radial nodes in
the all-electron wave functions by nodeless, smooth
maximum-similarity pseudo wave functions. We find
in fact that this repulsiveness, as reflected in the oc-
currence of zero-energy turning points rI of
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primarily to produce a fast convergence in momen-
tum space, e.g. , Refs. 6, 7) might introduce an
unwarranted energy dependence, ' its form-
unrestricted generation directly from the variational
eigenvalue problem' "yields a nearly energy in-
dependent and accurate potential.

The pseudopotentials sho~n in Fig. 1 are much
deeper and more localized than those pertaining to
nontransition elements. ' The depth of the I =0, 1,
and 2 potentials is —5.80, —5.77, and —35.54 Ry,
respectively, and the classical turning points occur at
0.84, 0.89, and 0.20 a.u. , respectively. Clearly, the
conventional plane-wave representation of the crys-
talline wave functions is largely ineffective for such
systems. %'e next discuss the mixed-basis representa-
tion' for the electronic states.

S. Eigenvalue problem
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where R„and v denote the direct primitive lattice
vector and the sublattice coordinate, respectively, and
N is a normalization constant. The basis orbitals
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s-d contribution. Figure 2 shows a contour plot of
the corresponding momentum representation of
F~(Q, Q') for I = I and 2. It is seen that these contri-
butions peak at about Q = Q' =7.35 a.u. ' for the s-p
n
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TABLE II. Self-consistent wave vector and band-de endent w
'

p 's
jp[XJ(kpr lxll kp, r)~, where X(k, r) is the s

sum o weights is normalized to unity.

kz point band 1 band 2 band 3 band 4
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0.010416 66
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0.020 833 30
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0.020 833 30
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0.003 15920
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the wave-function expansion.
A compatible convergence in the Fourier r

tation of
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Table III we have collected the energy eigenvalues at
some high-symmetry points, relative to the calculated
Fermi energy. The same table contains



ALEX ZUNGER, G. P. KERKER, AND MARVIN L. COHEN 20

—
8

of the BZ and then transferred on a grid of 512

points throughout the whole zone by making use of
the point group symmetries of the crystal. The
Fourier coefficients of the energy bands

Ctl) I
X (k) —k Yl

K
(14)

were obtained using a fast Fourier transformation.
N is the number of grid points. The number of grid
points R was then increased by a factor of 64 to a
mesh of 32 768 points. Interpolated values for e„(k)
are found by an inverse Fourier transformation on
the large mesh setting C&R =0 on the additional

points. The rms error of this interpolation scheme is
less than 0.1 eV for all bands except at crossing
points ~here the error can be of the order of 0.2 eV.
In Table IV we compare for a k point which does not
belong to the original 35 points the results of the fit
with the energy bands calculated directly by solving
the eigenvalue problem. The agreement is within
less than 0.1 eV. The density of states is given by

D(e) =—Xg(e —e„(k))N-
k, n

(15)

For the histogram in Fig. 4, we used an energy chan-
nel width of 0.1 eV. The Fermi energy eF is found
from the integrated density of states

N(.) =
J D(.') d.', (16)

using the criterion N(eF) = Z„, where Z„ is the
number of (valence) electrons per atom (Z„=6 in
the case of molybdenum).

The calculated density of states is shown in Fig. 4.
Three main structures are observed below the Fermi
energy and two peaks with 2 eV above E~. These are
compared in Table V with the available photoemis-
sion data. ' The peaks at —3.96, —2.92, and —1.67
eV are very close to the high-symmetry points N'2

(d~ -type), P4 (d~+ +~-type),

V
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of V, Nb, and Ta, it has been suggested that the two
prominent low-energy peaks at 2.35 and 4.1 eV arise
from g, X, and G~ G~ transitions, respectively,
while the wide absorption in the 11.5—20-eV region
arises from transitions to unspecified empty d states.
Using a minimum slope difference criteria between
initial and final states, we find that the peak along

X, should occur at 2.'55 eV at about —,
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FIG. 7. Band charge density in Mo at the N point in the
(110) plane. Full dots indicate atomic positions. Values are
given in elcell, normalized to unity; (a) N& (band 3), (b)
N) (band 4).
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N H

FIG. 8. Total valence pseudopotential charge density of
Mo in the (110) plane.

N

D. Fermi surface

Detailed theoretical and experimental studies of the
Mo Fermi surface (FS) have been given by several
authors. A relatively complete survey is presented in
Ref. 27. We have used the results of our Fourier fit
to obtain information about the Fermi-surface di-

mensions of Mo within the first-principles pseudopo-
tential method in Fig. 9. We have plotted the cross
section of the Fermi surface in the (100) and (110)
planes in analogy to Ref. 27. Bands 3 —5 contribute
to the FS. Contribution of band 3 is purely hole-like
and consists of an ellipsoid around N and an oc-
tahedron around H. Band 4 is an electronlike jack
around I, finally band 5 contributes a small
electronlike lens centered along the b-symmetry line
which is nearly circular. In Table VI we compare the
FS cross-section dimensions along high-symmetry
directions with the calculations of Koelling et al.
obtained from a relativistic APW (RAPW) calcula-

FIG. 9. Calculated cross sections of the Fermi surface in

the (100) and (110) planes of Mo.

tion, the results of Boiko et aI. 47 obtained from the
radio-frequency size effect (RFSE) and the results of
Cleveland et al. 48 obtained from the de Haas —van
Alphen (dHvA) effect. Considering the relatively
small amount of primary points included in the
Fourier fit the agreement is quite remarkable. We do
not get, of course, a jack-octahedron separation be-
cause our calculation is nonrelativistic.

IV. CONCLUSIONS

The first-principles nonlocal pseudopotential
method is shown to provide an accurate representa-
tion of the bulk electronic properties of molybdenum.

. Within this approach, the band structure, the density

0
TABLE VI. Fermi-surface cross-section dimension in A ' for Mo.

Direction This
Work

Ref. 27
RAPW

Ref. 47
RFSE

Ref, 48
dHvA

Band 3 (hole)
Octahedron [10o]

[110]
0.80
0.66

0.81
0.60

0;79
0.60

0.81
0.61

N ellipsoid Nr
NH
NP

0.35
0.25
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of states, charge density, and the Fermi surface can
be reproduced in reasonable agreement with other
calculations and experiment. Together with a
mixed-basis representation of the crystal wave func-
tion which accounts for both the delocalized nature
of the s and p electrons and the strong localization of
the d electrons, this nonempirical self-consistent
pseudopotential approach provides a very efficient

technique for electronic-structure calculations.
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