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~c! Multiexciton energies. The Nth exciton charging en-
ergy WN is the minimum energy needed to add to a d
having N21 electron-hole pairs~excitons! in their ground
state one additional exciton,

WN5EN,N2EN21,N21 . ~4!

Physically,WN is the highest possible energy for a phot
emitted in the transition from the lowest energy state oN
excitons to a state withN21 excitons. The difference be
tween successive multiexciton charging energies is theNth
exciton addition energyDN,N11

(X) ,

DN,N11
(X) 5WN2WN215EN11,NN )
t
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minimum ~CBM!, while addition energies areD1,2
(e)'40

meV. Of this, correlation energy is very small (;1 meV!, so
mean-field or even perturbation theory describes dot ch
ing and addition energies very well.
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cally, or Monte Carlo integration may be used. In this si
plest formulation, QMC is formally equivalent to the vari
tional techniques commonly applied to excitons
nanostructures.54 Because the integral is over all electron a
hole coordinatesR, variational QMC calculations resemb
classical simulations: a configuration of particle positionsR
undergoes a random walk through configuration space, u
the rules of Metropolis Monte Carlo integration. The s
quence of configurations,Ri ,Ri 11 , . . . , samples the density
uCT(R)u2.

The real power of QMC is that it can go beyond t
variational formalism and actually project the true grou
state energy from an input variational trial functionCT .55

By weighting the configuration as it samples configurat
-
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a-
ies; thus the calculated biexciton binding energy can actu
decreasewhen the CI basis is improved. We also show t
results of SDCI in Fig. 4~b!.

1. Dependence on dot size

We have varied the dot radius fromR50 to R580 Å, all
in the strongly confined regime,R&a0576.2 Å. Figure 2~b!
shows the exciton and biexciton binding energies as ca
lated by QMC. Figures 2~c! and 2~d! decompose the contri
butions to the exciton and biexciton binding into~1! first-
order perturbation theory,~2! self-consistency corrections
and ~3! correlation corrections, as in Eq.~8!.

The smallR limit is the energy of a bulk-II material, and
all excitonic binding energy is from correlation. As the r
ly

u-



C. Multiexciton energies

Figure 6 shows mean-field and exact~QMC! results for
the multiexciton charging energiesWN @Eq. ~4!#, and the
multiexciton addition energiesDN,N11
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The small value of correlation and the good agreement of
CI calculations for dot charging are summarized in the l
three lines of Table II.

IV. APPLICATION OF CI TO A MULTIBAND DOT
DESCRIBED VIA PLANE-WAVE PSEUDOPOTENTIALS

QMC calculations are currently limited to either sma
systems containing up to a few hundreds of electrons,42,63,64

or highly simplified model Hamiltonians~such as the EMA!.
A more accurate description of the electronic structure~Fig.
1! of semiconductor quantum dots can be obtained using
pseudopotential approach.48 Unfortunately, QMC methods
are presently unable to deal with the large number of e
trons of a typical quantum dot, and CI is the only viab
approach to treat correlation effects in large quantum d
described by atomistic pseudopotentials. In addition, the
agonalization of the CI Hamiltonian gives access to the
cited states~unavailable in ground state QMC calculation!
as well as the ground state of the electronic system, t
enabling the calculation of the optical spectrum of quant
dots.

In order to illustrate the capabilities of the CI approa
combined with a pseudopotential description of the el
tronic structure, we consider a nearly spherical CdSe qu
tum dot having the wurtzite lattice structure and a diame
of 38.5 Å. The surface dangling bonds are fully passiva
using ligandlike atoms.47 This quantum dot is representativ
of CdSe nanocrystals grown by colloidal chemistry metho

We consider here only low energy excitations of the el
tronic system, which are obtained by promoting electro
ur
t
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from states near the top of the valence band to states nea
bottom of the conduction band. The band-edge solutions
Eq. ~10! can be efficiently obtained using the folded spe
trum method,43–45 which allows one to calculateselected
eigenstates of the Schro¨dinger equation with a computationa
cost that scales only linearly with the size of the system.
this approach, Eq.~10! is replaced by the folded-spectrum
equation

@2¹21Vps~r !1V̂NL2« re f#
2c i~r ,s!5~« i

02« re f!
2c i~r ,s!,

~15!

where« re f is anarbitrary reference energy. The lowest en
ergy eigenstate of Eq.~15! coincides with the solution of the
Schrödinger equation@Eq. ~10!# whose energy is closest t
the reference energy« re f . Therefore, by choosing the refe
ence energy in the band-gap, the band edge states ca
obtained by minimizing the functionalA@c#5^cu(Ĥ
2« re f)

2uc&.
The solution of Eq.~15! is performed by expanding th

wave functionsc i(r ,s) in a plane-wave basis set. For th
purpose, the total pseudopotentialVps(r ) is defined in a pe-
riodically repeated supercellV containing the quantum do
and a portion of the surrounding material. The supercellV is
sufficiently large to ensure that the solutions of Eq.~15! are
converged within 1 meV. The single-particle wave functio
can then be expanded asc i(r ,s)5(Gci(G,s)exp(iG•r ),
where the sum runs over the reciprocal lattice vectorsG of
the supercellV. The energy cutoff of the plane-wave expa
sion is the same used to fit the bulk electronic structure
ensure that the band structure consistently approaches
bulk limit. The minimization of the functionalA@c# is car-
ried out in the plane-wave basis set using a preconditio
conjugate-gradient algorithm.

In the next step we construct a set of Slater determina
uFh1 , . . . ,hN ,e1
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change interaction splits the lowest energy excitonic s
(h0

1 ,e0
1) into two doublets, having total angular momentu

F52 andF51, respectively~see Fig. 8!. The lower energy
doublet (F52) is optically forbidden, while the higher en
ergy doublet (F51) is optically allowed. We find an energ
separation of;5 meV between the two doublets. The em
sion peakA1 observed in Fig. 9 comes from the recombin
tion of the higher energy doublet, which is thermally pop
te

-
-
-



t
o
es
lti
th
th
on

ed
v
al
m

e

b
o

Note that a calculation considering only ground state
ground state transitions would miss most of the peaks
served in Fig. 9. The capability of the CI expansion to acc
excited states, coupled with the possibility of using a mu
band pseudopotential Hamiltonian for the calculation of
single-particle energies and wave functions, makes it
method of choice for calculating excited states of semic
ductor quantum dots.

V. CONCLUSION

We have studied the effects of correlation on a simplifi
single-band model dot using both QMC and CI, and ha
studied correlation in the multiexciton PL spectra of a re
istically modeled CdSe dot using CI. Our results for the si
plified, single-band model are summarized in Table II. W
find the following results for our model:~1! total energies for
an exciton, a biexciton, and two electrons are dominated
mean-field effects, so that correlation energies and CI c
vergence errors are less than 1%@see Fig. 3#; ~2! typical
exciton transition energies, which are;1 eV, can be calcu-
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