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Heterostructures sharing a common atom such as AlAs/GaAs/AlAs hyg point-group symmetry which
allows the bulk-forbidden coupling between odd-parity light-hole stateag, Ihl) and even-parity heavy-hole
states e.g., hh2. Continuum models, such as the commonly implementstandard model’) k-p theory
miss the correcb,4 symmetry and thus produce zero coupling at the zone center. We have used the atomistic
empirical pseudopotential theory to study the Ih1-hh2 couplinddd1) superlattices and quantum wells of
GaAs/AlLGa _,As. By varying the Al concentratior of the barrier we scan a range of valence-band barrier
heights E,(x). We find the following: i) The Ih1 and hh2 states anticross at rather large quantum wells width
or supélattice periods 60n.<70 monolayers.ii) The coupling matrix element‘dm::hz are small 0.02—

0.07 meVf and reach a maximum value at a valence-band barrier height 100 meV, which corresponds

to an Al compositionx,;=0.2 in the barrier.iii) The coupling matrix Alements obtained from our atomistic
theory are at least an order of magnitude smaller than those calculated by the phenomenological model of
Ivchenkoet al. Phys. Rev. B54, 5852 1996)]. iv) The dependence &fjn; 2 ON the barrier height E, (x)

is more complicated than that suggested by the recent model of Garé&tz J. Vac. Sci. Technol. Bk, 2232

2000], in which V|1 hno is proportional to the product of E,(x) times the amplitudes of the Ih1 and hh2
envelopes at the interfaces. Thus, atomistic informatiorAis needed to establish the actual scaling.

I. INTRODUCTION

A. The three classes of light-holeheavy-hole coupling in
semiconductor heterostructures

Quantum states that belong to the same symmetry repre-
sentation mix and anticross in the presence of a perturbation.
The anticrossing effect on electronic energy levels of solids
is often very significant, and includes the occurrence of
“band-gap bowing” in random alloy$ band-gap narrowing
in ordered vs random alloyssaturation of impurity levels
with pressuré, and “p-d repulsion” in 1I-VI Ref. 4 or
I-11I-VI , Ref. 5 compounds affecting band offsets and spin-
orbit splitting. Here we focus on the consequences of level
anticrossing in 001) semiconductor superlattices and quan-
tum wells made of zinc-blende constituents. In the zinc-
blende structure the valence-band maximudBM) is a
four-degenerat® g, state



ropy \ #0. The nature of the level mixing depends on sym-
metry. There are three cases: A single zinc-blende inter-
face; the symmetry i€,,. ii) Two different interfaces in
systems that do not share a common atom; the symmetry is
C,, . lii) Two interfaces in systems that share a common
atom; the symmetry i9,q. Two equal interfaces in no-
common atom systems i001) superlattices with a noninte-
ger period also havB ,4 symmetry. We next describe briefly
these cases summarized in Table I. In this paper we concen-
trate mainly on caseii ).

i) A single zinc-blende interface: . A single interface



hand, thek-p theory is capable of describing couplings at
k#0 and thus has produced results similar to those of ato-
mistic theories for the hibridization gaps lat#0 in nomi-
nally semimetallic (InAs)/(GaSh), superlattices withn
>2816

iii) Two interfaces of a common-atom heterostructure:
D,4. The states that have the same symmetry representation
and hence can mix and anticrpsmderD,q are hh even
with Ih odd such as hh2 and Ihlor hh odd with Ih even
such as hh1-Ih2 The Ih1-hh1 coupling is forbidden. In the
Dag



priate C,, symmetry of the single00l) interface. This ap-
proach is substantially similar to Ivchenko’s. The only dif-
ference is that the |h-hh coupling parameter is expressed in
terms of the valence-band offs&t.

C. The purpose of the present paper and its main results

The purpose of this paper is to provide a microscopic
atomistic theory for lh1-hh2 coupling iD,4-type GaAs/
AlGa)As heterostructures. Using the empirical pseudopo-
tential method we determine the period. where
the (GaAs)/(AlAs), superlattices and the (GaAgd)
(Al _,GaAs),, quantum wells exhibit In1-hh2 anticrossing
at different valuex of the barrier. By varying the composi-
tion of the barrier material we alter the magnitude of the
well-to-barrier valence-band offsetE,(x). Calculation of
the coupling matrix element vs bdrier composition then es-
tablishesvmir?h2 for different barrier heights E,(x). We
find that: i) the Ih1 and hh2 states anticros at rather large
guantum well widths or superlattice periods <60,<70
monolayers. ii) The coupling matrix elemen\/:‘iﬂ;gh2 is
small, being between 0.02 meV and 0.07 meWM.) The
coupling matrix element obtained from our atomistic theory
is at least an order of magnitude smaller than that inferred
from the phenomenological model Hamiltonian approach of
lvchenko using a coupling parametep,=0.5)% iv) The
coupling matrix element is small at low Al composition
shallow barrier



tonian; d) one needs to fit only the bulk band structure with-
out additional e.g., interfacial parametef$

Finally, using the eigenstates obtained solving Ejwe
have calculated the interband dipole transitions-matrix ele-
ments squaretf j(e) =| &i|e- p|u;)|?, wheree is the photon
polarization vectory; are the hhl, Ihl, and hh2 hole states,
while «&; are theel ande2 electron states ad=0. The
study of the polarization-dependent oscillator strengths of the
interband transitions provide further information about the
nature of the hole and electron states and state mixing.

Ill. RESULTS

Figure 1 shows the energies of the first three lowest hole
states in (GaAs)/(AlAs) , superlattices versus the superlat-
tice periodn atkj=0. We see that the first three hole states
have the order hhl, Ih1, and hh2, respectively, and approach
the GaAs VBM as the period increases. On the scale of the
figure it is impossible to verify any anticrossing between |h1l
and hh2. Thus, Fig. 2 shows a closeup of the region in the
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E,(x=0.2)=82 meV. The corresponding coupling poten-
#al is Vihinne 0.065 meV. Note thaV |, is smaller at
higher E, higher Al content in the barrigrand is

0.03 eV at E,=490 meV &=1). Note also that
these values fohﬁhlyhhz are larger than the value obtained
in the case of (GaAsgjAIAs), superlattices, 0.020 meV

Fig. 2.

To understand the trend of the coupliMg, . versus
barrier height, we refer to an expression derived by Cortez
et al?’ in the framework of the envelope-function descrip-
tion of the superlattice states:

EU
Vlhl,hhzzk
23

J3

In this model the coupling potential is taken to be propor-
tional to the product of the envelope-function amplitufigs

and f,, at the interfaces;,; times the potential barrier
value. To test this model we plot in Fig. 7
(2Vininn2)/(Ifin1(Zind) | [ fana(zind ) versus  E,(x). We

use envelope functionswhich are directly dxtracted from
our calculated microscopic wave functions, normalized over
the unit-cell volume, through a macroscopic average proce-
dure. In this procedure the wave functions are first averaged
in the xy planes orthogonal to the growth directiario ob-

tain #(z). Then, to eliminate the oscillations along tke
direction which are periodic with a period equal to a mono-

layer distancg J(z) are averaged within every monolayer.

a
fin1 Zint) Frnz Zint)E- 4)

FIG. 3. Evolution of the wave functions of the second confined The resulting envelopesare then normalized over the su-
hole state left column and the third confined hole statesght
column) of (GaAs),/(AlAs) , superlattices with the superlattice pe- sponding to superlattices with periods<n., i.e., far from
riod n. Wave functions are averaged over the in-plane coordinatethe anticrossing period where the |hl and hh2 envelopes

crossing periodh, increases from a lower value.=61 at

E,(x=1)=489 meV

A 40 meV.

to n.=66

at

E,(x=0.1)
A

Figure 6 shows the anticrossing g approximately
twice the Viy1hne coupling parametérversus the barrier

height,

500

E,(X). We obtain the largest value df,c at

perlattice unit cell. We evaluate the envelog€g) corre-

could be deformed by the coupling and extrapolateat
According to the model of Corteat al. the slope of Fig. 7
should be constang/23. Figure 7 shows that our micro-
scopic calculation does not produce the simple linear scaling
implied by Eq. 4). The function plotted increases rapidly at
low valence-band offsets whereas at large offset it saturates
to a constant value.
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We can analyze our results fafi,nn, versus E, as
follows. For large barrier height the envelope fulctions are
strongly localizednsidethe well, so their amplitudé(z;,,)
at the interfaces approaches zero, &fd ,,,— 0. For small
barrier height E,—0 there is no interface anymore, the
cubic symmety is restored, and;yn,—0. Thus, there
should be a value of E, at which the coupling matrix ele-
ment V|h1,hh2:| l[/|hA V|l//hh2>| betWeen Ihl and th iS
largest. From Fig. 6 We see that the value d&, at which

the coupling potential is largest isE, 82AmeV corr 34-2urT8.2421 -1.1665 TD [(pondling)5 153(tod)]TJ /F16 1 Tf15.7534 0 -
A



agreement with the values we have obtained with our
pseudopotential approach. The differegtare related to the
different bulk parameters.
lvchenkoet al® considered a AlAs/GaAs/AlAs quantum
well with a variable numben of GaAs monolayers. They
introduced the Ih1 and hh2 anticrossing inahhocfashion
in the envelope-function formalism through the “generalized
boundary conditions,” which are equivalent to adding to the
Hamiltonian ae-function term, localized at the interfaces.
The coupling potential was expressed in terms of an adimen-
sional parametet;,, multiplied by the product of the Ih1 and
hh2 envelope-function amplitudes at the interface. They used
Mph=0.45,m;,=0.09, E,=0.53 eV similar to our values
mpn=0.40, m;,=0.11A E,=0.49 eV). Selecting;,=0.5
they obtained a gap & 1-2 meV at the crossing point
=50. This gap is at leasine order of magnitude largeghan
the values directly estimated in our atomistic calculations.
Also, the trend of thés,,; andE,,, energies versus, given
in Fig. 3a) of Ref. 6, is such that the minimum difference
between themthe anticrossing gagac), is not achieved at
n=n; the value ofn at which Ih1 and hh2 exchange their
character, see also Fig.c3 of Ref. 6] as it is in the atomistic
calculations. Obviously, the interaction potential parametesypbpand/2=Ih1 andV3=hh2, while forn>n, the roles of
t,=0.5 is too strong. Our atomistic calculations show thaty2 andv3 are exchanged. This calculation provides another
Vih1nnz is smaller, of the order of tens or hundreds of meV,way to study the mixing transition betwe#ml andhh2 and
and its effect on the hole energies is seen essentially only @fetermine the anticrossing poing. We see from this result
n ne. At smaller or largem, Ejp;=Ej,; andEyp,=Eppy,  that the transition takes place over just three monolayers.
where Ef,; and Ep,, indicate the uncoupled Ih1 and hh2 The calculations of Chang and Schulnfashowed a much
energies. The differences between the model Hamiltoniamore gradual transition with the well width
approach and our atomistic approach highlight the fact that  From Fig. 8 we also see that there is a dependence of the
the former approach depends on parameters it cannot calctransition probability on the polarization direction alongr
late. in the x-y plane. The transitions to the2 electron state are
On the experimental side, the effect of the |h1 and hhZompletely in-plane polarized while those to ik state are
coupling inD,q4 Systems is seen in the appearance of dipolemainly polarized along. No in-plane polarization anisotropy
forbiddenel-hh2 ande2-lh1 exciton feature§’*® From the  between the110] and — 110] directions is observed for any
excitation spectra of (GaAg)/(Alg,Gay7AS)74 multiple  transitions. This can be understood by observing that the
quantum wells, the energy difference between the dipoleeverall symmetry of these systems is thg, point group
allowed e;; = (lhl-el) and the dipole-forbiddere;,,
=(hh2€1) excitons and between the dipole-forbiddesn
=(Ih1-e2) and the dipole-allowe@,,= (hh2e2) excitons
can be estimated in both cases to be about 10 meV. In our
single-particle calculation when the splitting betwegg,
andEy,, is 10 meV, the light-hole and heavy-hole states are
only weakly coupled. However, a calculation of a full exci-
tonic spectrum, which is beyond our single-particle ap-
proach, would be necessary to assess the intensities of these
transitions and afford a direct comparison with this experi-
ment.

V. DIPOLE TRANSITION STRENGTHS

Figure 8 shows the dipole matrix elements for transitions
from the second valence subbandenoted asvV2) and
the third valence subbanddenoted asV3) to the two
lowest conduction subbandsel and e2, for a
(GaAs),/ (Al Gay gAS) =74 quantum well, as a function of
the numbem of GaAs layers in the well. We see that the
dipole transition probabilities show a mirrorlike behavior
across the valua.=64.7 which corresponds to the calcu-
lated periodn. of the anticrossing between Ih1l and hh2. For
n<n. the calculated transition probabilies indicate that the



sary values for the coupling strength. We have calculated the
strength owmzﬁhz through the evaluation of the anticrossing
gap which opens between the Ihl and hh2 energies when
they get closer to each other. This evaluation has been per-
formed for (GaAs)/(AlAs), superlattices and for
(GaAs),/(Al,Ga, _ AS) - quantum wells, where the Al
content of the barriex has been varied from 0.1 to 1.0. At a
critical periodn=n_, anticrossing between the lh1 and hh2
states is calculated. Our calculations show that the strength
of Vihinne is very small, of the order of magnitude 0.05
meV, in all the systems we have studied. The smallness of
this interaction causes the lh1 and hh2 states to mix and form
an anticrossing gap only for periods that are within a few
monolayers of the critical size. at which anticrossing oc-
curs. This happens at a period 61 in (GaAs) /(AlAs),
superlattices with a gap about 0.040 meV wide. Also in
(GaAs), /(Al,Ga _yAS) - Mmultiple quantum wells the an-
ticrossing well widthn, varies between 61 and 67 as a func-
tion of the Al barrier compositiorx. The anticrossing gap
Eac andVihiph2) depends on the compositiorofithe bar-



