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A first principles approach to the pseudopotential method is developed in the local density formalism (LDF). Asan
example, tests on the carbon and tungsten atom potmtmls are glven Companson of the cneray elgcnvaluus and total
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1. Introduction fixed basis set (e.g. linear combination of atomic orbi-
tals or LCAO). Although for many electronic struc-

The Hartree Fock (HF) model pr0v1des a widely ture problems it is desirable from the computational
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all other electrons. To overcome this difficulty the
pseudopotential scheme is often introduced [4]. The
basic idea is then to remove the constraint of the
standard canonical HF theory which requires the
valence orbitals to be orthogonal to the core orbitals.
This is accomplished by adding to the hamiltonian a
term (Phillips—Kleinman pseudopotential [4]), which

cal evidence as well as extensive experience with elec-
tronic structure calcuiations indicates that the
changes in the first-order density matrices due either.
to bonding or to low-energy excitations, relative to
some standard reference level (e.g. the electronic
ground state or the non-interacting atoms limit in a
molecule or solid) are mainly brought about by the

outer “valence” orbitals while the inner “core-like”
orbitals remain largely unchanged. These latter orbi-
tals are not only of little direct interest for many
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projects out the core components of a valence type
wavefunction. This permits the use of smooth and
nodeless valence “‘pseudo-orbitals” which are usually
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(without having explicitly to introduce core orbitals
into the problem) is then added and the core elec-
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trons are removed. This transformation on the wave-
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unction isnot vninue since there is ay infinitegum- directed in the past towards the constructionofhath

ber of ways one can transform the HF eigenfunctions

transformation of the HF orbitals that results in
pseudo-orbitals having, say, a maximum similarity to
the original orbitals, in some preferred parts of space
[5-8].
41'““ l:_‘-,_i,-yh—.
jor assumptions: (i) the core orbitals entering the
density matrix and the pseudopotentml are “frozen

”

semi-empirical pseudopotential schemes aimed at
model pseudopotential schemes [14—17] which

~attempt to simulate HF results via model potentials

with adjustable parameters. While being useful in
practical upplications [13—17] both schemes show a

on the basis set used.
The local densny functlonal (LDF) formallsm

in a given referencee
such for all excited states as well as for all the differ-
ent bonding situations (e.g. atoms in molecules and
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electronic properties that do not sample directly the
core region. (ii) Unlike the situation encountered in
the ali-electron HF model, it is assumed that a radi-

Kohn and Sham [19] offers a dlfferent route to the
solution of electronic structure problems in that it
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tential. [t has been widely used in one form or
another (including the simplified Hartree—Fock—
Slater method) by the vast majority ofelectronic
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ous atoms [6] and molecules [7—12] with con-
siderable saving in computational effort.

Parallel with the development of first-principles
HF pseudopotentials, substantial effort has been

£ The elimination of the core orbitals from the electronic
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the definition of the pseudo-orbitals, this scheme is
hard to carry out in practice due to the need to use
exact core orbitals (which require a full solution of
some related allelectron problem), and the need to
recalculate the projection operators for each excited
state. More importantly, one is still faced with the

ments of core basis functions still need to be evaluated), in

r
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the consideration of core integrals is not necessary.
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which the various Fourier components of the crystal
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eigenvalue differences [13].
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In this paper we present a ﬁrst -principles approauh

the carbon and tungsten atoms. Section 5 consists of

TY UT I QITCICCIT UM POLTCITLAT appealig 1 te
“standard” LDF formalism (i.e. in which only the
non-gradient electron correlation functionals {19,25)
are included), applo\nmatlons (ii) and (iii) which are
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2. Development of the local density pseudapotential

Our development of the local density pseudopo-
tential proceeds as follows: one first solves the local
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tains inaccuracies proportional to the change in the
core contribution to the density matrix. These

mentum species a rotation of the ground state orbi-
tals is performed such that one obtains new valence
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problems of interest. For example, the nth moment
I I i i+ IV A W
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to the core, smooth and nodeless. One then concen-
trateg an the yvariatinpal lacal dencity ealutinne af 2

carbon: fp,¢(#)r"dr equals in atomic units 64.1056;
5.5995;0.27303;0.10104 forn=-2,—1,1 and 2
respectively in the ground 1s22s22p? configuration
and 64.1942;5.6036;0.2728:0.10089 for the
excited 1522s!2p3 configuration where all the quanti-
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conceptually more appealing than in the Hartree—
Fock method, due to the suitability of the slowly-
varying-density approximation [19,25,26] used in the

TICIITIOUS [V, -CICCLION aloIm (pseudo-atom) naving the
pseudo-orbitals as its eigenvectors and the exact all-
electron-orbital energies as its eigenvalues. Such a
pscudo-atom experiences the Coulomb and exchange-

correlation field of its My-electrons plus some yet un-
anaifiad arstenwal cladln mmde it L0 1 b I o —

electron eigenvalues, the pseudo-orbitals and the cor-
responding local density potentials. [t is then fixed at
its value obtained for the chosen reference electronic
state and appliet as such (static core approximation)

expansion of the total exchange and correlation

[——

smooth and nodeless valence orbitals. As in any pseu-

seudo-atom. The_properties'calculated for the

seeming arbitrariness is, however, less serious than
first appears. We show that although many useful
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energies and excited state pseudo-orbitals whose
changes from the ground state pseudo -orbitals match
g o 3 bep

appear if the pseudo-orbitals are orthogonalized to
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where the one-body potential is given by:

Vioa (0] = =ZJr + Veou[osD)] + Vielos@)] - (1)

Here Veoui [os(r)] and Vi [ps(r)] are respectively the
electronic Coulomb and the exchange- and-correla-
tion local potentials [26] due to the allelectron
charge density p(r),and ¥7,(r) and €5, denote the
central-field (n, {) eigenfunction and eigenvalue,
respectively (square brackets denote functional
dependence; s is a running index). The Coulomb po-

system (including the se
exchange and correlation potential is given to the
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We now divide the eigenvectors and the charge
density into two parts: the “core” part (with eigen-
vectors ¥ 57 (r) containing V2 electrons) and a “val-
ence” part (with eigenvectors Y 7(r) and density
ng(r) with vy electrons). We will denote all-electron
(core + valence) densities by p(r) and valence pseu-
do-densities by n(r). By valence electrons we mean
those given by the aufbau principle as outside a rare
gas core (2s, 2p for row 1, 3s, 3p for row 2, 4s,4p, 3d
for row 3, etc.). It would hence suffice for our pur-

abal thesp qrhirels Rydbeangyamomens

on the relative insensitivity of the bondmg character-

Soc to direarsinal

-interaction termij. 1€ above-gelmed core; 1t qoes not imply an

guishability between core and valence electrons A
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definition of core is straightforward but will not
concern us here. (Such a generalization is presented in
ref. [28].) Since we will be interested in a smooth
and nodeless representation for the valence orbitals
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Vielos®] = Vilos(D)] + Veloslr)] (3)
where V, [p(r)] is the well known [19,25] “p'/3”
term:

Velosnl = —(3/7)"" {or)}™ @

and V_[ps(r)] is likewise a local function of r, which
was worked out by several authors [26,27] in numer-
ical form and given by Hedin and Lundqyist [25] in
an analytically fitted form. The total charge density
is related to the eigenvectors of all the o, occupied

states by:
Ooc .
py(e) = L NEHO) V@) (5)

where Vj,; are the occupation numbers for the elec-
tronic configuration s. Eq. (1) is solved self-consis-

density matrix [eq. (5)]. Since only the total wave-
function {and not the individual orbitals ¥5,(r) of
eq. (1)} is invariant under point-group rotation, the
orbitals themselves are not determined uniquely by
that equation and hence one usually requires ortho-
gonality between them. This results in the familar

ity constraint to the core orbitals. Concentrating on a
chosen reference electronic state e of the atom, we
generate the smooth orbitals for this state by a deor-
thogonalization procedure, namely:

core

oni(r) = ;rl.nl\-’nle(’) * E nI w ¥R
or
ont(r) = Z;Cn I, aVri(r) 6

where u,, 103) Stands for both core and valence orbi-
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" Wnr(r) is normalized and nodeless. This would leave

(for an atom belonging to the second or higher rows
in the periodic table) some unused degree of freedom
in constructing Cpy ;. (See ref. [23] for details.)

We will now be interested in the local-density
variational problem for a “pseudo-atom’ having only
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of basis functions tc adequately describe them in
LCAO type expansion models. :

tals {@i7°(")}. To obtain the N-electron one-body po-
tential that would yield such variational solutions we



A. Zunger et al. [ First-principles pseudopotential in the LDF : ) 79

congider first the local- density total enerev E. of such
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an electronic system subject to the Coulomb and
exchange-correlation interactions among its V,-elec-
trons plus an additional static external field Ve, (r) =
—Nyfr + V()

~ R

where n¢(r) is the variational density for the system in
state e and Ty[r.(r)] is the non-interacting Kinetic
energy of the electron system with density ng(r).
Eyc[ne(r)] is the total exchunge and correlation
energy of the mteractmc Nielectron system. For suf-
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(9) with the density given in (11) is now used to

define the external potentml Nyfr+ Vi(r) in terms
of the eigenvalues {7’} and eigenvectors {py°}. We
require that the pseudo-hamiltonian in eq. (9):

HPSa0 ) = Nifonf(r) (12)
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e,.it is possible to define an external potential:

V() = —Nyfr + V@) = ey + 5 V2 0ol )
— Veoulme(] — Viclnen] , @13)
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Eyc[ndn] = j ne(r) egc[ne(r)] dr,

on E; with respect to the density z.(r) and replaces
the functional derivative of the non-interacting
kinetic energy To[n.(r)] w1th respect to 1.(r) by the

atom would yield via the self-consistent solution of
ar gt . == i C—

niently by using the tact that y,{r) are solutions to
the all-electron hamiltonian —3V? + Vi, [o(n)] [eq.
(1)], yielding
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{3V + Vegr (O} 01 () = Nidenr () 9)
where
ngf(r) = "‘NV/r + Vle(') + VCoul [ne(r)] + ch ["c(’)] B

and the exchange and correlation potential is given by:

Vielnen)] = d(ng(r) excln e(r)])/d”«.(r) (10)

Iy al .
Zrir Gt ¥ ()

+ {Vtot [0e(N)] — Viot [”e(")]} ) (14)

where Vo [p(r)] is the total potential of the all-elec-
tron density po(r) [eq. (1)] and V,q¢ [1.(r)] is the cor-
responding total potential of the pseudo (valence)

C X

ner) = I NGOV an

of basis functions in its LCAQ solution on account of
the nodeless character of its occupied orbitals.
Obviously, this simplification by itself does not

o p—— .
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states that are not present in the core of the real atom
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construction of ¥§(r) for this state. However to the
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by an external potcntuﬂ (whlch replaces these effects
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method over the frozen-core approach is that with
s toirc bl pcssscanisiieels s sl is
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potentxal Vixi(r) defined for some reference statee,

cenlaces the
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in the Iatter scheme addltlonal approximations to the
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ues €5y, cigenvectors ¥5,(7), the total potential
Viot [p(r)] and expansion coefficients {Cyy; ;). This

v t tha rafar,
fixes ¥V, [\l} at the reference state ¢ and from this point

on V(r) is treated as a static external field acting on
the electrons of the pseudo-atom via eq. (9) for any
arbitrary electronic state s # e. In the general case,
the eigenvalues €5, and the total energy [eq. (6)] dif-

valence field in the HF scheme, while in the local den-
sity model the diagonal first-order density matrix

determinec th
determines the potential field uniquely.

It is obvious from eq. (14) that the effective po-
tential in the pseudo-atom Vee(r) is weaker than the
full core + valence potential in the real atom
Vt(,t [0«(P)] due to the cancellation with the first two

2l L L L14N Tlaio i iaadats

s LA (L D
states fand j) would not equal exactly those ob-
tained from the all-clectron problem [eq. (1)] (#H}>
(12) does not commute with the all-electron hzmul
tonian in (1a)). The usefulness of our present
approach hence depends entirely on the question of
whether our static external potential ¥(r) is capable
of simulating the dynamic effects of the core elec-
trons for any arbitrary electronic state of the atom or
the atom placed in a bondmg envzromnent (e.g. the

ian) This.can

be tested by solving both (1) and (9) self-consistently
for a series of states, using for the latter a fixed pseu-
dopotential generated, say, from the ground state. We

will show in the next section by means of particular
St d 11 el e P-

of the “Phillips cancellation theorem” [4] and is
brought about by the balancing of the attractive
Coulomb singularity that a valence electron feels in
the core region and the repulsive kinetic terms arising
from the nodal behavior of the all-electron valence
orbitals. It is noted that for valence orbitals that do
not have a matching /-counterpart in the core orbitals
(and are therefore nodeless), the sum in the second
term in (14) reduces to one term (over the nodeless
nd hence cancels with the first
term, leaving a relatively “strong external potential.
Hence, while the “‘s” total effective potential in first-
row atoms is relatively weak and can be treated per-
turbationally in solid-state pseudopotential calcula-

e T o

tained in solving (9) with the pseudopotential (14),
hence confirming the insensitivity of the valence field
to the small core changes attendant on such proces-

L o - Llthoge~ , - o -~
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effective potentials are not amenable to such treat-
ments and indeed give rise to serious convergence dif-

I 4ppruXiiig-

tion common in quantum-chemical electronic strue-
ture calculations in that the results obtained with the

LCLittdl ULLLCLYS UlhlllLULly LIULIL [LIdilY VLIS pycutupu-
tential schemes [30—32] in that in the latter case
atoms with more than one valence electron are not
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core-valence type effects. (The core of, say, an O5*
ion is not very much like that of the O atom.) Similar

" advantages are enjoyed by the Hartree—Fock poten-
tials which have been constructed by an analogous
procedure [5—8].

We may briefly discuss some properties of the
pseudopotential in eq. (14). When one considers the
lowest nodeless valence orbitals in an atom (e.g. 2p,
3d) the transformation in (6) is trivial since no core
orbitals have to be mixed into the valence orbitals to
produce a nodeless functions and hence o=

match the real atom valence orbitals ¥)°(r) in the
region of space considered relevant for the observable
of interest. This approach has led to many prescrip- -
tions in HF pseudopotential schemes and leads to .
acceptable but approximate results. In this approach
the expectation value of an operator @ is usually cal-
culated directly from the pseudo-charge density:

. valence

n'(r) = Z,) NaldiO12, an

———— i s

Vi) = Viot[oe(r)] — Vtot[”e(’)] . (15)

Hence, for a first row-atom only /=0 and /=1 pseu-
dopotentials have to be computed since V, equals
exactly V', etc. This is distinctly different from the
situation encountered in the HF pseudopotential
theory [8] in which, due to the non-locality of the
exchange, ¥, is only approximately equal to ¥;.
(Similarly, if one is to use the exact all-electron orbi-
tal U5,(r) in eq. (14) instead of the pseudo-orbital .
(eq. (6)) the pseudopotential would reduce to the
form (15) for all -components.) Hence, when the

pseudopotential is used in molecular or solid-state cal-

culations in the form:

nr) = @M,Iw,,l<r) ) (18)
to yield: ‘
0= [y + " @} O dr,, | (19)

with the expectation value over a valence pseudo- -
orbital is given by:

Oh = [ 50) Ote) dr e

We will illustrate in the next section some numerical

results obtained with this “maximum similarity”

approach (b). Alternatively, one can use for the atom

any convenient choice of {C5y 1} (obtaininig in each

rasethe exart reference statg valgnce eieenvaliiesie.g. L —

where I4 and rm;, define the spherical harmonics on

snte A, only the lowest members need to be calculated

solved, one orthogonalizes the pséudo orbitals to the
core orbitals of the real atom. This yields orthogal-
ized pseudo-orbitals ¢y,(r) given by:

the above requirements should yield, for the refer-

= ) — Aoy N)iogf ) Ypr) 14 7,

where 4 is the normalization constant, and the
L i /= ;

hrl— gﬁ‘—' = N |

the all-electron local-density hamiltonian. If, how-
ever, it is desired that expectation values (other than
orbital energies) over the pseudo-orbitals match
closely those yielded by the exact all-electron valence

valence

PO= D NEOP. | (22)

In this case, expectation values are taken dlrectly on

E— et 1 i

the coefficients {Cfy; »1}so that gp,,f(r) would closely

Q;);,(r)_ If the pseudo-orbitals ¢y,(r) are found for the
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n¥(r) + n(r), while if the equation is solved for a dif-
ferent excited state or for a polyatomic system, the

.......... J eem meem e mwmea— e s e e oo o

gonalization procedure in (2 1) is easy and straight-
forward to perform since the major time-saving step
has already been utilized in solving a simplified self-
consistent local density equation for the valence elec-
trons only.

E} is the total encrgy for the all-electron and for the
valence-eleclron cases, reSpen,twely The sum in the

[P

(73) are t.alculated by dxrect numeru.al mtearatxon
The accuracy in evaluating the total energy in eq.
(23)is 1077 au
We chose here as a reference state for the atom the
ground electronic state (although, as demonstrated in
1 section. a similar aceuracvy in the nredictinne
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The calculations required here contain two essen-

Chiny e Loy mwaans 5 e peve
dopotential by solving the pseudo one-particle equa-
tion (9) tor arbxtrary elz.ctronu. states and using the

P Ve [ EFW Pare loela
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(1) for this state, the eigenvalues €}, the eigenfunc-
tions ¥4y y(r) and the total self-consistent potential

' [ ragl
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cally from the pseudo-orbitals. [n step (b) we use
these pseudopotentmls to solve eq. (9) for a series of
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local density equation [eq. (1) with the functionals
defined in (2)—(5)] for a chosen reference state. It
has been customary in the HF pseudopotential
approaches [5~7] to carry out this step (as well as to
test the pseudopotential) by expanding the solution
Yha(r) in (1) or @, (r) in (6) in a fixed basis set (e.g.
gaussians) and similarly to represent the pseudopoten-
tial by some analytical fit. Although this procedure is
usually satisfactory [5—8], it represents an unneces-
sary approximation for the atomic problem. We avoid
these approximations by employing a direct numeri-
cal technique with no basis set expansions. We use a
standard predictor—corrector method [33] in an
inwards—outwards integration scheme. The numerical
accuracy in the eigenvalues is 1078 au. The total
energy is calculated from (7) by using the charge den-
sity matrix constructed from the eigenvalue problem,

to yield
()Cc
5:— '__ffﬂ(r).ﬂ(f)
+ f o) fexc 0] = Vielo(O)]} ar (23)

T — I ————

lated from egs. (17) and (18) and the orthogonality
coefficients required in eys. (21) and (22) are com-
puted numerically.

The operators O [egs. (19) and (20)] chosen for
testing the resulting pseudo wavefunctions are 7" with
—2 <n <3 for the orbital expectation values, and
exp(ig - r) for the charge density expectation values.
The latter quantity {atomic X-ray scattering factor) is
calculated for a series of momentum values g from
the standard form for the central field given by

=[S 0w, (4

where p(r) can be: (a) the all-electron density, (b) the
pseudo-charge density plus frozen core density or (c)
the orthogonalized pseudo-charge density plus frozen
core density.

4. Ilustrative results; carbon and tungsten atoms
4.1. The pseudopotential

We generate the pseudopotential Vy(r) and Vi,(r)




A. Zunger et gl. | First-principles pseudopotential in the LDF

a)

czs*2pt

Qi0

‘83

T Y
: b)
cMa¢'2p*
23 WAVE FUNCTION

010

d-

0.0

=
o
-
o
=z
Z
1]
Z

'AVE FUNCTION

0zo-

“020
1 [ ] I L 1
Qo 10 20 30 00 10 20 a0
DISTANCE (au) DISTANCE (au)
Fig. 1. Allclectron ( ) and pseudo (— — —) 2s wavefunctions for: (a) the s°p? ground state of carbon atom. (b) the ionized

state.

[34]. The exact U§,(r) orbital obtained from the

solution of (1) is depicted in fig. 1a together with the
pseudo-orbitals ¢8,(r) (the pseudo 2p orbital equals
here the exact 2p orbital as discussed above). The
coefficients of eq. (6) are C§s ;s =0.2213783 and
C8s .25 = 0.9509916 for ¢’ (r)and €5, 1. =0,
C5p 2p = 1 for ¢8,(r). This choice assures that the
g i e 1053 = AT
normalized and show maximum similarity to the
exact valence orbitals (any increased mixing of ¢/§,(r)

K- 200 NS LT T

¢55(r) to deviate more significantly from V5,(r) in

the tail region and would consequently lead to differ-
ences in the observables computed from these orbitals
unless g§(r) is specifically orthogonalized to the core)
[35]. It is seen from fig. la that for distances from
the nucleus larger than about 1 bohr, ¢5,(r) and

V5, (r) are very similar (relative absolute amplitude

differences of less than 3%).

Fig. 2 depicts the pseudopotentials V&r) and -

3 T —T T T T LI T T T T T LR T T
£}
T \ 1
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Fig. 2. Pseudopotentials for carbon r¥s(@), - - —

_er n.
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(252)

where

Viot ps["g(r)] =(—Z,fr+VE DS ["g(")]

1Ag (-dCpenuent non-1ocalty appears in uie 11st term

of (25a):

3. BB,
=l Cnl,n Wnieh

Ug(’ ) =€f —

(26)

the I-components of the pseudopotential. (This last
feature arises from the locality of the LDF exchange,
and does not hold in Hartree—Fock [8].) Here

Viot [pr) contains the Coulomb and exchange-corre-
lation potentials of the carbon atom and

by the small difference Vo |pg(r)] — Vior,ps 11(7)]

between the Coulomb, exchange and correlation po-

* paddalesosachendiogbodhonl il ikt |
pseudo-charge densities, respectively. Past a distance

ofabout 3 au from the origin, the total Coulomb con-
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already negligible at these distances) as a dominant
term. As seen from fig. 3, the pseudo exchange-corre-
lation term ¥y ;s[n5(r)] closely matches Vo [pg(r)]
in the tail region due to the similarity of the all-
electron and pseudo-charge den51ty [ce.f. eq. (6)]

5, T
‘ 1

lation potentials (which can be arbitrarily reduced
through a minimization of the differences between
the real and pseudo-orbitals at the tail region) [35].
The pseudopotential F§(r) is hence shorter range than
the full all-electron potential Viot [0e(r)] *.

LVCLY, d3SOCIZECU WILI UIC DSCUUU-CIIEIEC ACIIsily . g,

COIC and accdys rdpialy to SiTidll values. ror i Lie

an effective charge) together with the Coulomb and

Tl M S T T

60 T T T T T T
s0r r\(’[p'lr)}
S

a0}

["q ir )]

,
! Vet ps

to mix into tlLis nodeless valence state) and hence

(=

TuciLc at

small r.
In fig. 4 we display the carbon effective potential
in a form more familiar in solid-state applications, i.e.

I Wa onant

~r V1)

00¢-""
[

STENCE (aul

solution of the ail-electron eigenvalue probiem (1) and
from the pseudopotential expression (14). The results indi-
cated that in this case the behavior of ¥j(r) at long range is
entirely governed by the ditferent decays of the valence
Coulomb term in (25a) and the pscudo-valence Coulomb
term VE Coul ps(r) of (25b). In the presence of exchange-cor-

rclanon, on'the othur hand thc lon‘--ranse behav:or is dic-

with the allclectron potential Vyq4(r).

V& ps) in (25).
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;cr i 4.2. Eigenvalues and total energy differences
) Tables 1 and 2 show the energy eigenvalues and
7 the differences in total energy (excitation energies)
25 for a series of electronic configurations for carbon [34]
and tungsten [28] as obtained in an all-electron SCF
_ P . e e calculation (“full SCF”) and with the pseudopoten-

e AE

—p- e i T T R

[36—38]. The I # 0 components (“non- Iocal pseudo-
potential™) have been neglected in many solid state
applications and simulated semi-empirically by the
—Are~ %" form (4, &> 0) by Hemstreet et al. [39]
this is qualitatively similar to the form shown in fig. 4.

in Fourier space. The effective potential form factor

vi(g) = fexp(—ig- NV§"()er ,

where V}""(r) is given in eq. (9), is seen to be diver-
gent (i.e., %) at ¢ = 0 with a cross-over (v(qo) = 0)
at qg = 1.86 ;! for the s-potential and-a maximum
(v.a.) = mdx\ at @ =4 an'. 1t is more common to

JKp=U.04aN0 @/ LK = 1207 NUMCTOUS CIMpiricdt
calculations done on diamond (i.e. adjusting u,(G) to
obtain agreement with experiment for some low-lying
interband transition energies, where G is a reciprocal

. lattica vector) vield w ldelvjcattered values for the

certainty in the calculation.

It is seen that a remarkably high accuracy is ob-
tained over a large range of electronic configurations
including excited and ionic species, using the ground
state pseudopotential. As described above, these dis-
crepancies are a measure of the errors introduced by
frozen core approximation. To test the sensitivity of
the results to the assumed reference level we recom-

ClgCHViHU.CS Ol e tesiea s p- c1gcnvalues aroppea
from 2 X1073 au to 5 X 10~ au, while the errors in
all other tested configurations did not exceed 2 X
1073 au for the eigenvalues and 10~ au for the total
eneray dlfferences conﬁrmmc thereby the relative

parameiers ol 8- qo/ 'nF = viyies: I - JeTTTe
1

direct first-principle values for v,(q) as predicted by
the local density model! for carbon (atomically
screened) subject to the static 1s core approximation.
In particular, we notice that our calculations show a
larger pseudopotential core (i.e. smaller ) and more
noticeably a slower decay of y)(g) with momentum at

% This would facilitate the use of these pseudopotentials in
solid-state real-space band calculations (e.g., LCAQO) since
lattice sums of V;(r) converge much morc mpldly th.m the

¥
av ot

J‘ :
IE !a!!"!e !m VLML VL L

avaitatinm

shows good agreement with the exact results |3
4.3. Wavefunctions and charge densities

In table 3 we compare the calculated orbital mo-
ments using the all-electron wavefunctions [“‘exact
orbital”, ¥3,(r) of eq. (1)], the pseudo-orbitals [gp(r)
of eq. (9)} and the orthogonalized pseudo-orbitals
[75:(r) of eq. (21)] for the carbon 2s orbital. We note
that the pseudo wavefunction introduces substantial

errors in the moments — a factor of 4.3 in the n = -2

OPW) slower convergence is expected.

; —— i

" Hence, although the pseudo-orbital wy°(r) was con-
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Table 1
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e 5

— o —

Cl'\" : 52[)[

E,  -37.0536044
AE, 00

e2p  —0.1734399

L E, -36.7533514

A, 0.3002530

e:s  —0.8899874
1 N

= AT

A, 0.3580219

—5.2037811
0.0

20.1755639
~4.9035473
0.3002337

—-0.8924458

g

BT )

0.3573672

©0.002

0.0002
0.002

o

C02522p0352

Ey  -36.9274553
A, 0.1261490

e2p  —0.3579445
£, -36.7741344
AE,  0.2794699

c2s  ~0.0943490
r Y -y o

1]

0.0006

e R o )

AEt 0.6829869

—5.0777439
0.1260370

-0.3593705
—4.9236569
0.2801240

-0.09421%4

RIT xS

0.6828861

0.0001

0.001

0.001 ;
0.00014

0.0001

waye she wmaximyounassible sjmilarity

pseudopotential eigenvalue problem ang should be

damemuil kmxted [cf eq (6)} Thxs oomtsmuld be

A

In table 4 we present the X.ray structure factors of

gain 1t 1S observed that while the use of’
valeqre denditv intraduces enh.

itale el 3 A

¥ The nuclege magnetic shieldine constant = 142

the all-electron wavefunction and the sum extends on all elec-

trons) is 25.8320 X 1075 au~! using the exact LDF car-
bon wavetunctions and, 25.4254 x 105 au~! using the

=]

pseudo wavefunctions (1.6% error) and 25.8320 X 10—5

1.4 CITOT 1IN 1Ne Calcuiated Umma“mtn. SUS(,Eptlbﬂlty

-

Im)-——_

= E} s

diamond structure factors in which the use of pseudo-orbi-
tals produced structure factors in very good agreement with
these obtained from the all-clectron orbitals while consider-
ably poorer agreement was obtained when orthogonalized

y R S

principle ground-state pscudopotential is used, the ortho-

-
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Table 2 Table 3
N e 73 YRS - LY [ Y

Energies Pseudo- All- Ortho- Moment Pseudo- Exact Orthogonalized

potential electron gonalized orbital orbital pseudo-orbital
pseudo ’ -

co: 2522p2
WO: 6526p054% r—2y 0.8214358 3.5499372 3.5494371
c6s ~0.1478 -0.1478 b 0.7990946 0.9135809 0.9135808
€6p —0.0327 -0.0327 rh 1.5625877 1.5938337 1.5938337
€sq -0.1783 -0.1783 o? 2.9787695 3.0896185 3.0896183
(Fgs 3.4241 3.5756 3.5756 r3 6.7936328 7.1030495 7.1030496
(Mgp 5.1157 5.2435 5.2435 Clt: 2522p1
rsd 1.9296 1.9996 1.9996 2 0.9051024 4.0291539 4.0570634
WwO0: 6slep!sg? o™h 0.8456368 0.9771805 0.9796634
(&F;=3.25eV) by 1.4495504 1.4815605 1.4793120
€6s ~0.1801 ~0.1793 s 2.5132019 2.6221502 2.6142221

— s =N05 3 ,1039245 5.19: %R1710

T SIS SIS T 701 TS 0.7825223 0.8919433 0.8919970
rsd 1.8913 1.9652 1.9611 o 1.6227521 1.6551629 1.6558959
WO: 6506p0546 igit) 3.2845658 3.4036979 3.4066762
(AE; =~ 0.04 eV) 3 8.1686368 8.5248036 8.5353401
€6s -0.1039 -0.1023 C9: 252352

€6p —0.01326 -0.01278 r=2 0.9860846 4.5376364 45885756
&sd -0.07001 -0.0666 ) 0.8870820 1.0382943  1.0417387
es 3.8003 3.9468 3.9384 oh 1.3694056 1.3994561 1.3985313
Kep 6.4531 6.7574 6.6556 ) . 2.2264337 2.3252487 2.3733574
trisg 22403 2.3089 2.3152 3 47719507 44611905  4.4581860
WL*: 6526p%5d CO: 2512p3

(8Ey =9.33 eV ) 0.8293108 3.5802110 . 3.5972737
€65 ~0.4125 -0.4049 ol 0.8035044 0.9177704 0.9197704
€6p -0.2527 -0.2471 133 1.5514342 1.5855766 1.5825911
€sd -0.5200 -0.5156 ) 2.9313405 3.0535451 3.0413864
{rgs 2.9707 3.1553 3.1217 r 6.6152805 6.9637727 6.9199654
Mep 2.1722 3.9016 3.8469

tHsq 1.7657 1.8434 1.8317

W3+: 6526p9541

(AE; = 60.22eV) that the errors introduced by using the nonortho-
€6s —1.0521 o388 — - gonalized pseudo-orbitals are quite sizabie and sub-
259 :(1)23879 _?'gégé stantially larger than the accuracy of most experimen-
("5;;5 24690 2.6886 2.6142 tal structure factor measurement techniques.'

rep 2.8443 3.0638 2.9659 Although one has broad latitude in choosing the
Msd 1.5617, 1.6471 1.6234 coefficients C,,, ,;, particular choices may have

special advantages or disadvantages [5—8,35,41—44].
The choice actually made above (adding just enough
core to remove the first node) or suggested later

tfim“[ X rﬁ pyie o vewrdr otd ot

p— -
um sin 6/, e.g. 5.4% at sin /A = 13.6 a5 '.) We note valence orbitals are reorthogonalized to the core, no
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Table 4
X-ray structure factors for the ground state carbon atom

Table 5
Carbon ground state eigenvalues and moments of r in the 2s
state, computed with the pseudopotential of eq. (27). The

SRrTte fovact snsendn nsendn-nrih. rsaulseoncsomensod with theonaetallolasieon solusions
egh eq. (1). Energies in atomic units and ') in 2}

0.0 6.000000 6.000000 6.000000 Effective Full SCF

0.3 5.778677 5.781887 5.778679 potential

0.6 5.210876 3.222423 5.210886

1.0 4.254419 4.279708 4.254418 €7g —0.4573829 ~0.4573838

1.5 3.199111 3.236315 3.199107 €2p —0.157951 —0.1579534

2.1 2.374506 2.411824 2.374506 r=% 64.1055643 3.5499372

2.8 1.879442 1.902297 1.879443 =l 5.5995528 0.9135809

3.6 1.614311 1.614498 1.614311 (rz 0.2730326 1.5938337

4.5 1.442790 1.421250 1.442791 (re) 0.10104083 3.0896185

55 1.282316 1.246075 1.282316

7.8 0.925535 0.883754 0.925535
10.5 0.591291 0.560647 0.591291 .
13.6 0.348089 0.3293553 0.348089 of Cy vy is arbitrary and unimportant in some limits,
19.0 0.146508 0.138699 0.146508 extreme choices like this one can lead to poor results
30.0 0.035460 0.633669 0.035461

particularly serious errors in the calculated charge dis-
tribution occur (table 3). This will be true, generally,
so long as the C,; 7y are chosen with reasonable cau-
tion. One extreme choice of the C,; ,,»; permits com-
parison with the Phillips—Kleinman pseudopotential.

| Y SR S e e A 2l NN

VE(r) = (€25 — exs)lf =0XX = U}
+ VE [og)] = Vi s 1e(N] - (27

Notice that this result has the form of the Phillips—
Kleinman potential [4]: the first (pseudopotential)

for wavefunction quantities, even though the orbital
energies are very satisfactory. This must be kept in
mind when using empirically-derived pseudopoten-
tials for calculating such observables as charge densi-
ties, oscillator strengths or Compton profiles.

Table 2 presents additional results, for the tung-
sten atom [28]. Again, the first-principles pseudopo-
tential reproduced energy quantities to extremely
high accuracy, while the pseudo wavefunction reor-

dlimmmmn Tmad 4 btlin Faommnam mamcm 2elalda aciaallawd A

state, the errors are no larger than 2%. Thus even for
this stringent test, on a large system with occupied
high angular momentum states and at high excitation
energies, our pseudopotential performs admirably.

Ii W ST -
' =

!

THHU, LHE g 1D HUL YCLY HHUUIL LIRS §/og UL LT tdl
region, so that the resulting pseudopotential (27)
would be expected to yield rather poor wavefunc-
tions and orbital densities; again, table 5 shows this
expectation to be coreect. In this case, however (un-
like the choices taken previously for the C,,y ,7), we
cannot simply reorthogonalize the valence to the
core, since we choose v, = Y, so that the valence
orbital is the core orbital. Thus, although the choice

proceaures 1or Use 10 the LUF CONiext | 34,33 ,40—43].
Several of these pseudopotential methods are semi-
empirical [36—38] and are subject to some errors, par-
ticularly for wavefunction-related quantities [49,50];
we feel that these failures are due to both the failure
to include the full angular momentum dependence
and the absence of explicit constraints of wavefunc-
tion similarity. More recently, several first-principles
pseudopotential-LDF procedures have been proposed
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[34,35,45,46], some of which have been successfully
“tested in molecular [50] or solid-state {51] calcula-
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