

9`YW#fcb]WWcbgYeiYbWYg`cZ`fUbXca ``UmYfh\]W_bYgg`ZiWhiUh]cbg`]b`5`5g# U5g gidYf`Uhh]WYg

Kurt A. Mäder, Lin Wang Wang, and Alex Zunger

Citation:

Electronic consequences of random layer-thickness fluctuation is oelectronic in AIAs/GaAs superlattices

(Received 12 June 1005: accepted for publication 24 August 1005)

AlAs/GaAs (001) and (111) superlattices; (i) atomic intermixing across the interfaces; (ii) replacing

doping); and (iii) random layer-thickness fluctuations in superlattices (SL). Type (i) is an example of lateral disorder, while types (ii) and (iii) are examples of vertical disorder. Using three-dimensional empirical pseudopotential theory and a plane-wave basis, we calculate the band gaps, electronic wave functions, and optical matrix elements for systems containing up to 2000

across the interface can significantly shift the SL energy levels and even change the identity (e.g., symmetry) of the conduction-band minimum in AlAs/GaAs SLs; (ii) any amount of thickness fluctuations in SLs leads to band-edge wave-function localization; (iii) these fluctuation-induced hound states will amit photons at apprecise below the "intrinsio" abcorption edge (red shift of

AlAs/GaAs SLs with monolayer thickness fluctuations have a direct band gap, while the ideal (001) superlattices are indirect for n < 4; (vi) there is no mobility edge for vertical transport in a disordered

intensity and large red shift of the photoluminescence in the latter system. We provide predictions

I. INTRODUCTION

Experimental and theoretical research on semiconductor superlattices (SL) has, for a long time, focused on ideal, proposed^{11,12} and grown,^{13–15} revealing very interesting disorder-induced effects on the electronic, transport, and optical properties.

Disorder in a SL can be broadly classified in two catego-

layer thicknesses n and m of the two materials A and G ,	(i)	Lateral disorder in the (x,y) substrate plane ¹⁻⁵ [Fig. 1(a)], and
ture of these ideal structures by applying periodic boundary	(11)	Vertical disorder along the SL growth direction (z) in

[F1g. 1(0)].

flicts between experiment (e.g., spectroscopy) and theory (e.g., envelope function $k \cdot p$) are often settled by adjusting some of the theoretical fitting parameters (band offsets, Luttinger parameters, layer thicknesses), thus restoring agreement whire experiment. In recent years, attention has similed somewhat away from ideal to nonideal SLs in two ways: I not, while devent of more sensitive characterization teen niques, it has become evident that not only are semiconductor interfaces almost never ideal, but that this unintentional disorder in real samples has discernible spectroscopic and transport consequences¹⁻¹⁰ that should be taken into account by theory. Second, *intentionally* disordered SLs have been

Lateral disorder occurs in the form of chemically intermixed interfaces,¹⁻³ steps,⁴ or islands⁵ protruding from material A into G₁ and vice versa. The translational symmetry of the SL is broken in the (x,y) plane. When averaging over

der produces a graded, continuous composition profile along the z axis. Thus, if all of the interfaces in a laterally disordered SL are equivalent, the one-dimensional (1D) periodicity along the growth direction is preserved on average.

Vertical disorder, on the other hand, is characterized by a discrete composition profile along z. Here the interfaces are reasonably flat in the (x,y) plane, but the A and G layer thicknesses fluctuate around their nominal values. The translational symmetry of the SL along z is broken, and the dis-

^{a)}Present address: Centre Européen de Calcul Atomique et Moléculaire, Ecole Normale Supérieure, 46, Allée d'Italie, 69364 Lyon Cedex 07, France; Electronic mail: mader@cecam.fr

8=	A M R S/I S/I S/I	islands, or well-separated steps, the system resembles, in terms of the electronic structure, a SL with vertical thickness
		the interfaces labeled "S/I" in Fig. 1(a)].
~		and great care is taken to assess the effects of any possible lateral imperfections that could interface with the warted of
	(b)	largely concentrated on strictly one-dimensional one-band models, such as Kronig, Penney models using the effective mass approximation (EWA), or one-dimensional ugin- binding models. ^{11,25,26} Within 1D models, lateral imperfec- tions are structured by graded, continuous potential promes
11	tical disorder along the superlattice orientation. The interface structures sketched in cross section in (a) are atomically abrupt (A), "microrough" or interface (A) would (B) and stoned or interface (S(f)) (The latter the distinguished in cross section.) In (b) the layer thicknesses fluctuate, framing interact unlases unlase and a " " " " " manufacture while the indi-	in the form of mathematically 1D models, if one is willing to ignore the truly 3D crystal structure of a SL. A vast literature exists on localization in 1D disordered systems, ^{29,30} and 31^{-33}
	order is "quasi one dimensional" (which does not mean, however, that the Schrödinger equation can be separated into	which have been realized experimentally in 3D SLs, e.g., AlAs/GaAs Fibonacci SLs. ^{13,35,36} Studies on nonideal SLs using three-dimensional band-
	Unintentional disorder is likely to consist of both types	unit cells are required to simulate the absence of periodicity
<u></u>	order depend critically on the coherence length of the experi- mental probe (x-ray diffraction, electron microscopy, Raman <u>sectioning, cici). Fairet disorter, for shample, has been</u>	intermixing in (AlAs) ₁ /(GaAs) ₁ (001) SLs has been studied using the local-density approximation (LDA) by considering reconstructed interfactant unit cents with atomic swaps across
	scales. ^{4,18} If the roughness spectrum is bimodal ¹⁸ having	adia SL a by Hirosa and as workers ³⁶ and by Kumor and
	wise galacting the scheronas langth of the state is much	
	ange roughness scale, men me probe win see an ensemble	In this orticle we procent 2D electronic structure-colou
	the second because the second bit is a set of male and a second because the second bit is a set of male and a second because the second bit is a second because the second bit is a second bit	layer thicknesses (vertical disorder) and with interfacial
	in quantum wells of various thicknesses. ^{7,10,19} If the probe involves excitation of a valence hole or a conduction electron	the energy bands is particularly important for short-period
`` <i>* —</i>	in a cubic semiconductor, its response will predominantly	originating from different points in the Brillouin zone. Dis-
	form of atomic intermixing, the effect on the SL band struc- ture is noticeable predominantly in short-period SLs, but less significant in long-period SLs or multiple quantum wells	erties relative to their ordered counterparts with the same composition: (a) strong and initially fast decaying (lifetime $\tau = 0.25$ ps

	though the equivalent ordered (AIAa) ((CaA'a) SI has	neoudopotantial and 1D offective many merules on disendened
(h)	an indirect band gap and thus emits both weakly and slowly;	SLs are presented. Conclusions and a summary are presented in Sec. V.
(0)	respect to the equivalent o -SL:	
(c)	An order-of-magnitude slower rate of reduction of the PL intensity with temperature. ⁴⁶ and	II. MODELING THE STRUCTURE OF SUPERLATTICES
(d)	Nonexponential PL intensity decay at long times ⁴⁵	WITH RANDOM LATER-THICKNESS FLOCTUATIONS
Th	tese unusual properties of d -SLs appear very attractive for	<i>n</i> monolavers of material A and m monolavers of material
on nii	these two types of intentionally disordered SLs has been blished in Ref. 47.	however, instead of the periodic sequence $n,m,n,m,$ we
	IN MODALING PRA ALANYEANA NUMBER DE S. S. J. J. S.	
(i)	The lack of translational symmetry requires the use of unit cells with a macroscopic length N≈1000 mono-	[see Fig. 1(b)]. The SL is thus no longer described by the small, $n+m$ atoms unit cell A_n/G_m . Instead, we use a large unit cell that can be described by (normalized) distribution
	(1947~200 mm, where a is the monolaver informess):	
		We were Use and the second sec
	nm.	however, be easily relaxed by allowing $p_{\alpha}(0) > 0$. For example, $p_{\alpha}(0) > 0$ means "skip a layor of metorial C" with
WI by rec	hile it is possible to rescale the microscopic length scale replacing the periodic atomic potential by an external, stangular potential, this approach fails to describe impor-	probability $p_G(0)$.] By requiring the two materials A and G to alternate, one considers in effect the joint distribution function $P(A_nG_m)$ of one-dimensional "molecules" A_nG_m ,
mi ctri	croscopic pseudopotential description of the electron	Sasaki et al. ¹⁵ chose this type of random sequence, with
abs	sence of translational symmetry. We use fixed (screened)	$p_A(n) = p_G(n) = p_{(n)}, \text{ for } n = n \text{ for a set } 0 = 0 for $
bar bar cal fol	nd structures, effective masses, deformation potentials, nd offsets, and energy levels in superlattices. ⁴⁸ This is also led the empirical pseudopotential method (EPM) in the lowing, The wave functions are expanded in a basis of	The form of Eq. (1) is also expected in SLs with uninten- tional random thickness fluctuations, if these fluctuations do not depend on the material deposition sequence (i.e., if there
<u>بر المعام الم</u>	blded-spectrum" method. ⁴⁹ where eigenstates are obtained	growing A-on-o). Modifications of Eq. (1) have also been considered in
	· •	
gaj eig iza allo	b), without having to solve for any of the lower-lying genstates first, thus circumventing the need for orthogonal- tion. The effort scales linearly with the number of atoms, <u>owing us to use the realistic, three-dimensional pseudopo-</u>	thickness of the AIAs segments to a constant n_0 , hence, $P(A_nG_m) = p_G(m)\delta(n-n_0)$, (where $n_0 \approx 10$), and $p_G(m)$ was chosen to be a discrete Gaussian distribution around a mean thickness $(m) \approx 10$ ML Areat $gt gl^{45}$ on the other
ten flex the for	tails, and to solve the Schrödinger equation in a highly xible plane-wave basis even for $N=1000$ ML. Following se accurate pseudopotential calculations, we also permed EMA calculations	hand, fixed the length $M=n+m$ of each "molecule" using $P(A_nG_{M-n})=p(n)$, where the distribution $p(n)$ was chosen to be the same as that used by Sasaki <i>et al.</i> ¹⁵ In this approach $p_A(n)$ and $p_G(m)$ are completely correlated, since knowl-
(i)	to check the validity of the effective mass method, and	edge of one completely specifies the other. Therefore, in con- trast to Sasaki <i>et al.</i> 's <i>d</i> -SL, Arent <i>et al.</i> 's variation corre- sponds to partially ordered SLs (p_0 SL), rate ining long range
(ii)	to obtain some statistical properties of the electronic	order.
	The remainder of the article is organized as follows. In	SI direction is conveniently measured in terms of the
ele	cuonic naminomans are discussed in Sec. III. in Sec. IV	It, one assigns a pseudospin variable S_i of value ± 1 (-1) if

J. Appl. Phys., Vol. 78, No. 11, 1 December 1995

Mäder, Wang, and Zunger 6641

 $[p(2) = \frac{5}{6} \text{ and } p(1) = p(3) = \frac{1}{12}]$, i.e., for a *d*-SL with average 1 (0-SL) | / $y_{re} \mathcal{Y}(r)$ shows the same quantity for a large degree of dis аю вресна саво от топонајот анектово. n' = n + 1 around a given (ideal) layer thickness n we can -0.75 (a) tive frequency of the respective thickness fluctuations n+1er-layer correlation func $R = \frac{p(n+1)}{p(n)} = \frac{p(n-1)}{p(n)}.$ disordered 0.75 R = 1/10(3)0.50 Because the distribution p(n') is normalized, we can write 0.25 p(n) = 1/(1+2R) and $p(n \pm 1) = R/(1+2R)$. For the ideal, 0.00 ordered $n \times n$ superlattice R=0, and $p(n') = \delta(n'-n)$, -0.25 whereas for a d-SL with R=1 all three layer thicknesses -0.50 $\{n-1, n, n+1\}$ occur with equal probability $p=\frac{1}{2}$. The minimum value of R that can be reached in a SL of finite length -0.75 (b) N corresponds to a single "chain mutation," (a single refer to this limiting once by the natotion D. O (distinct fro -0.50 ranneativalu the functio alation Fig. 2(c), and the "ideal" periodicity of 4 ML is still clearly Inter-layer separation The one-dimensional Fourier transform of the real-space correlation functions of Eq. (2) equals $|S(k_{\parallel})|^2$, where k_{\parallel} is a wave vector along the SL direction. The form factor $|S(k_{\parallel})|^2$ FIG. 2. Layer-layer correlation function $\langle \Pi_2(j) \rangle$ [Eq. (2)] of (a) an ordered $(A)_2/(G)_2$ superlattice (o-SL), (b) a disordered superlattice (d-SL) with a is proportional to the diffuse scattering intensity of a kinesmall degree R = 1/10 of thickness fluctuations [Eq. (3)], and (c) a d-SL with matic scattering experiment at zero temperature. Figure 3(a) maximum disorder R = 1. shows $|S(k_{\parallel})|^2$ of the ordered SL with correlation function $\langle \Pi_2(j) \rangle$ depicted in Fig. 2(a), for k_{\parallel} lying in the first Brillouin zone of the empty linear chain. Clearly, the "diffuse scattermonolayer i is occupied by material A(G). The pairing" of the o-SL consists of the new Bragg, or satellite peaks correlation function for two monolavers separated by disbecause of the particular unit cent choice n. 2.) D(N) where sum runs over the N monolayers of a particular realto true diffuse scattering throughout the 1D Brillouin zone. ization of the SL, and the angular brackets denote a configu-The average periodicity $\langle n \rangle + \langle m \rangle = 4$ still leaves fingerprints rational average. In an ordered A_n/G_m SL we have in Eq. (2) at the peak positions of the o-SL. (In the case R=1, there is N=n+m and $\langle \Pi_2(j) \rangle$ is a periodic function with periodicity also a maximum at the previously forbidden wave vector n+m. This is illustrated in Fig. 2(a) for an A_2/G_2 o-SL, $k_{\parallel} = \frac{1}{2}$.) no /II (ii) is soon to be a (discrete) norrisdia fun af a mantially and and of 45 fl with antiputated unity and periodicity $n = n + m = \pi$. For nayor correlation runemon (112(1)) is periodic, out us an disordered SL, however, we must perform the configuratude is smaller than that of the ideal o-SL. Figure 4 shows $\langle \Pi_2(j) \rangle$ for po-SLs with $\langle n \rangle = 2$, $R = \frac{1}{10}$, and R = 1 exhibiting tional average in Eq. (2), or equivalently consider the limit

6642 J. Appl. Phys., Vol. 78, No. 11, 1 December 1995

Mäder, Wang, and Zunger

i his article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to] IP: 128.138.41.170 On: Tue, 14 Jul 2015 11:52:34

ordered (o-SL)	R = 0	$\begin{array}{c c} 1.00\\ \hline \\ 0.75 \\ \hline \\ \text{ordered} \end{array} \qquad $	
units) 801		0.00 -0.25 -0.50	
(a) (a) (a) (disordered (d-SL)	R = 1/10	$\begin{array}{c} 0.75 \\ 0.75 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0 \\ $	
ni gin no ni gin			
disordered	R = 1	$\frac{-0.75}{1.00} \frac{(b)}{1.2} \frac{1}{3.4} \frac{5}{5.6} \frac{6}{7.8} \frac{9}{9.10} \frac{1}{11.12}$ Inter-layer separation	
1) []			
÷			
(c).	25 0.50 0.75 1.00	· · · · · · · · · · · · · · · · · · ·	
0.00 0.			
FIG. 3. The diffuse scatte Figs. 2(a), 2(b), and 2(c),	ering intensities $ S(k_{\parallel}) ^2$ of the <i>d</i> -SLs shown in respectively.		
coexistence of rather (marked by vertical comparable amplitud The appearance of	strong peaks at the o -SL peak positions impulses) and a diffuse background of e than in a d -SL (Fig. 3). of diffuse scattering intensity in a d -SL	b. log. units)	
rule due to the brea d -SL. We see in the f	king of translational symmetry in the collowing sections that the relaxation of	$\begin{array}{c c} \overline{\mathbf{x}} \\ \overline{\mathbf{x}} \\ \hline \mathbf{x} \\ \hline \mathbf{x} \\ 100 \end{array} \begin{vmatrix} \text{partially} \\ \text{ordered} \end{vmatrix} \begin{vmatrix} R = I \end{vmatrix}$	
tronic structure of dis	sordered superlattices.	1 Rime arolan	
III. ELECTRONIC S			
<u>Δ. Three-dimension</u>	TRUCTORE CALCOLATIONS		
	al nseudonotential representation		
1. The pseudopote مسترجعه بالمعنية المعنية	ntial and the basis set		

J. Appl. Phys., Vol. 78, No. 11, 1 December 1995

Mäder, Wang, and Zunger 6643

[This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to] IP: 128.138.41.170 On: Tue. 14 Jul 2015 11:52:34

۱<u>-۲۰۰۰ - ۲٬۰۰۰, ۱۳۱٬٬۰۰۰ - ۲٬۰۰۰ - ۲٬۰۰۰</u> operary lovels It wes recently shown 49 that one pseudopotennai, $\left[-\frac{1}{2}\nabla^2 + V(\mathbf{r}) - \boldsymbol{\epsilon}_{\text{ref}}\right]^2 \psi_j(\mathbf{r}, \mathbf{k}) = (\boldsymbol{\epsilon}_j - \boldsymbol{\epsilon}_{\text{ref}})^2 \psi_j(\mathbf{r}, \mathbf{k}),$ (7) $V(\mathbf{r}) = \sum_{\alpha} \sum_{\mathbf{r}} v_{\alpha}(|\mathbf{r} - \boldsymbol{\tau}_{\alpha} - \mathbf{R}_{n}|),$ (5) where ϵ_{i} is an arbitrary "pointer" and $\{\epsilon_{i}, \psi_{i}\}$ are identical (7) corresponds, however, to the eigenvalue closest to $\epsilon_{\rm ref}$. cells n of the screened atomic pseudopotentials $v_{\alpha}(r)$. We Thus, by placing the "pointer" ϵ_{ref} inside the band-gap rehave recently parameterized $v_{\alpha}(r)$ for $\alpha = \text{Ga}$, Al, and As, so gion, one is guaranteed to find the valence-band maximum to fit the exercimentally mean and hand structure $(GaAs)_n/(AIAs)_n$ superiations. A detailed comparison of the problems can be solved readily. Reference 49 provides techhulk properties calculated with these empirical pseudopotenrithm used to solve Eq. (7). The solutions of Eq. (7) obtained Ref. 48. An important aspect of this pseudopotential is that this way are *exact*, equalling those of Eq. (4). the arsenic potential depends on the identity of its four nearest neighbors, i.e., the number of Al and Ga atoms around it. This introduces important interfacial B. One-dimensional envelope-function model $V(\mathbf{r})$ changes from GaAs-like to a mixed GaAlAs type at the interface and finally to AlAs-like. Thus, while $V(\mathbf{r})$ is not In this subsection, we describe the effective-mass model calculated self-consistently, it was constrained to correctly used in addition to the pseudopotential method to calculate describe LDA-calculated superlattices via introduction of the electronic structure of the disordered SL. By using the such interfacial effects. This feature distinguishes our empirieffective mass model, we are able to find the eigenstates cal pseudopotential calculations from other calculations of even far away from the band edge and obtain statistical propsuperlattices (see review of other calculations in Ref. 48). erties of the states by calculating many different random se Fountion (4) is solved by expanding $dc(\mathbf{r},\mathbf{k})$ in plane $\psi_j(\mathbf{r},\mathbf{k}) = \sum_G^{G_{\text{max}}} A_j(\mathbf{k},\mathbf{G}) e^{i(\mathbf{k}+\mathbf{G})\cdot\mathbf{r}},$ Using the Kronig-Penney effective mass model, the (6) three-dimensional problem of Eq. (4) is reduced to the onematrix elements of $V(\mathbf{r})$ in the basis set of Eq. (b) are calcu- $\left(-\frac{1}{2}\frac{d}{dz}\frac{1}{m^*(z)}\frac{d}{dz}+V_{\text{ext}}(z)\right)\phi_i(z)=\epsilon_i\phi_i(z).$ (8) lated by a Fourier transform, with no approximation except truncation: The basis set (6) is truncated at some maximum Here $m^*(z)$ is the effective mass, $V_{ext}(z)$ is the external value of G_{max} =2.24 a.u. (resulting in about 30 plane waves potential [to be distinguished from the microscopic atomic per atom in GaAs/AlAs systems) determined in the construcnotential of Eqs. (4) and (5)] and $\phi_2(z)$ is the envelope funcnicetive mass ni (2). Like in the empirical pseudopotentia 3D problem. Note also that no use is made of effective-mass, calculation, we assume periodic boundary conditions for the $k \cdot p$, or envelope-function approximations here. supercell. This is equivalent to connecting the left-hand end of the SL with its right-hand end. Written in the form of Eq. (8), we imply that the boundary condition at the GaAs/AlAs 2 Solving the Schrödinger equation interface and is the continuity of $\phi_i(z)$ Substitution of the plane-wave expansion of Eq. (6) into $m^*(z)^{-1}(d/dz)\phi_i(z)$. More explicitly, we have the Schrödinger equation Eq. (4) results in a matrix (secular) equation whose dimension is $N_G \times N_G$, where N_G is the $\left(\frac{m^{*-1}}{dz}\frac{d\phi(z)}{dz}\right)_{t=0,0,0,0} = \left(m^{*-1}\frac{d\phi(z)}{dz}\right)$ (9) number of plane waves entering Eq. (6). In practice, this μì $N \sim 1000$ MIL. Standard techniques for solving schoolinger s layer bout m and vext are constants. Let us denote by i the

equation require orthogonalization of each state to all other states, thus leading to an N_G^3 scaling of the effort involved.

layer index (l=1,...N, running from left- to right-hand side). Then, m_l^* , V_l , and the layer length d_l specify the physical

6644 J. Appl. Phys., Vol. 78, No. 11, 1 December 1995

Mäder, Wang, and Zunger

This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to] IP 128.138.41.170 On: Tue, 14 Jul 2015 11:52:34

<u>, - " - _ - . . .</u>

(iii) the potential offsets for the GaAs/AlAs interface are small (Fig. 6), thus, even for n=1, the k in Eqs. (12) and (13) is small. so nonparabolicity is small.

In contrast to the good agreement between EMA and EPM for the above states, the EPM $\overline{\Gamma}_c(\Gamma)$ curve for both (001) and (111) bends down at small *n*, while in the EMA there is a monotonic dependence. The EPM bending is due to the mixing of $\overline{\Gamma}_c(\Gamma)$ with $\overline{\Gamma}_c(X_z)$ in the (001) case and with $\overline{\Gamma}_c(L)$ in the (111) case.⁵² This cannot be described by the one-band effective mass model (or even four-band $k \cdot p$

i. micennixing in (001) superiances

Chamical nonch

unerlattice can be viewed as a

Χ.

10° (27-7)

perlattices has been suggested by Laks and Zunger³⁷ as a reason for the discrepancy between the experimental assignment of the conduction-band minimum and theoretical predictions. In particular, for the monolaver (n=1) superlattice

-derived gap at M is found 54 We tested the idea of I aks

and the broken lines are linear interpolations between the respective end

given supercell. $\langle \Gamma_{1c} \rangle$, $\langle X_{1c} \rangle$, and $\langle L_{1c} \rangle$ are shown in Fig. 8 for n = 0, 0.25, 0.50, 0.75, and for the perfect monolayer

 $n \approx 0.4$ in close agreement with the LDA result⁵⁷ ($n \approx \frac{1}{2}$)

 $(Al_{1/2+\eta/2}Ga_{1/2-\eta/2}As)_1 (Al_{1/2-\eta/2}Ga_{1/2+\eta/2}As)_1,$

where η is the long-range-order (LRO) parameter n=1 de-

roughness in the monolayer superlattice we expand the repeat period $(X \times Y)$ in the interface plane to an (8×8) unit cell. We can thus have $\eta = 1 - n/32$, where *n* is the number of Galdersitz interchanged screeps the interface. In each set 2. Intermixing in (111) superlattices

Da

As the reneat period n of the ideal SL increases chemi-

the band gaps can shift considerably. We have considered the $(AlAs)_6/(GaAs)_6$ (111) SL, because of a controversy about the nature of the band gap between theory^{52,60}

t interface. As a result there is in principle no nexis distu-

however, we assume a repeat period of 4 ML along [001], resulting in a 512 atom supercell. Hence, within the supercell there are four distinct Al-rich and four distinct Ga-rich lay-

lyzed in terms of their "parent" zinc-blende states from

expanded in terms of a usually small number of zinc-blende wave functions. We use the expansion coefficients of the latter expansion as weights in evaluating spectral averages of zinc-blende-like eigenvalues.⁵⁹ For example, $\langle \Gamma_{1c} \rangle$ denotes the expectation value of the zinc-blende Γ_{1c} energy level in a SL, we have used a planar (4×4) unit cell to simulate chemical intermixing within ± 1 ML across the interfaces, resulting in a 384 atom 3D unit cell. The superlattice is thus converted

ound

ALAS layers, and two alloy layers. we chose the composition of the alloy layers to be 50%, corresponding to maximum intermining. Tuble II compares the band gaps of the inter-

the pseudodirect $\overline{\Gamma}_{6c}(L_{6c})$ and indirect gaps $M_{6c}(X_{6c})$

however, does not change upon intermixing, remaining $\overline{\Gamma}_{6*}(\Gamma_{6*})$ although the pseudodirect transition $\Gamma_{6*}(I_{16*})$ is now only 20 meV (down from 50 meV) away.

gap it un intertaces

TABLE II: Band gaps (in eV) of the (AIAS)₀/(GaAs)₆ (111) superlattice with ideal and chemically intermixed interfaces. The zinc-blende (ZB) parent states are found by projecting the SL wave functions on ZB states.

Gap (ZB origin)	Ideal SL	Intermixed
$\overline{\Gamma}_{6c}(\Gamma_{6c})$	1.81	1.89
$\overline{\Gamma}_{6c}(L_{6c})$	1.86	1.91
$\bar{M}_{6c}(X_{6c})$	1.92	1.95
$\tilde{M}_{6c}(L_{6c})$	2.02	2.04

Experimentally, the absorption edge was determined to be at 1.90 eV,⁶¹ close to our calculated band gap of the intermixed SL. The observed PL emission peak at 1.80 eV, however, cannot be explained by chemical intermixing: Table II shows that intermixing leads to a blue shift while experimentally the PL is red shifted. A possible explanation for a large red shift of the PL emission is observed in occ. If PL where it is

We next model the case of a single layer of A or G inserted in an ordered A_2/G_2 SL. It is well known⁶² that, while in 3D an impurity potential has to exceed a certain

bound state. To tinderstand the possibility of impurity interval localization, consider, for example, a $G_3 \delta$ layer embedded in the otherwise perfect o-SL $\cdots A_2G_2A_2G_2A_2G_2\cdots$, thus converting it into $\cdots A_2G_2A_2G_3A_2G_2\cdots$, denoted as $A_2/G_2:G_3$. If the $G_3 \delta$ layer is attractive to electrons (holes) it will bind a state below the CBM (above the VBM) of the o-SL.⁶³ We find that a (GaAs)₃ δ layer in the (AlAs)₂/(GaAs)₂ o-SL indeed binds an electron and a (double degenerate) hole [Fig. 9(a)], while an (AlAs)₃ layer binds an electron but does not bind a hole (Fig. 10). Figure 11 shows as dashed lines the dispersion of the bound states of a single δ layer in A_2/G_2 .

of the n=2 ordered SL along the symmetry lines $\overline{\Sigma}$ and $\overline{\Delta}$, i.e., from $\overline{\Gamma}$ to $\overline{M} = 1/\sqrt{2}(1,1)$ and from $\overline{\Gamma}$ to $\overline{X} = 1/\sqrt{2}(1,0)$, respectively. The thin horizontal lines denote the band edges 0.04 0.06 (a) 0.01 CB2

GaAs δ-layer in (AlAs)₂/(GaAs)₂

CB1

0.04

0.02

0.00

(b)

हि

VB3+4

FIG. 9. Pseudopotential calculated planar average of the wave function

(001) growth axis

N = 128 ML

lowing length scales (in ML units). The effective localization length for wave function ψ_E at energy E is defined as⁶⁴

AlAs δ - layer in

$$L_{\text{eff}}(E) = \frac{1}{d} \left[\int dz \left(\int dx \, dy |\psi_E(\mathbf{r})|^2 \right)^2 \right]^{-1}, \quad (16)$$

(AlAs)₂/(GaAs)₂

The wave-function localization perpendicular to the FIG. 10. Like Fig. 9, but for an (AlAs)₃ δ layer. In this case, there is no

Small mean density	Large mean density
Small fluctuation nearly "ideal" SL/MQW $(\Delta n \leq n)$ impuritylike localized states	strongly disordered MQW effective-mass-like bound states
Large fluctuation Strong perturbation of hand edges	d-SL, no-SL
n<10	
with $N \approx 10-20$, as have been used before to describe disor- dered SLs ³⁹ are unable to simulate the behavior of truly	line is $2L_{\text{eff}}$ using the one-dimensional version of Eq. (16). Figure 13 shows that all states are localized, as expected
E A disordored array of Slavers	states. Around the band edge, the localization of the states is
Next, we introduce disorder in the SL by arranging the δ	gives the distribution of the d -SL states, in both energy and
that very large supercells are required, if one wishes to ac- curately describe the layer-layer correlation function of a disordered system. We have used total lengths N of up to 1000 ML for EPM, and up to 2000 ML for EMA calcula- tions in order to verify the convergence of the results ob-	One way to display the information in Fig. 13 more quantitatively is to calculate the density of states (DOS) and localization length L_{eff} as functions of energy <i>E</i> . We have calculated 100 <i>d</i> -SL systems (each with 2000 ML as in Fig. 12) and we have the Fig. DOS and for the product of the produc
est needs to be evaluated; in some cases (see below) we have used ~ 10 realizations of a <i>d</i> -SL of given total length N and disorder parameter R, and have found that the EPM-	one-dimensional DOS. If the lateral dimensions were considered, the shapes of the DOS would change.) For electron states, we calculated both the X valley states and Γ valley
often used a single realization of a d -SL to calculate band- edge energies and wave functions. For the EMA-calculated density of states, on the other hand, we have performed con-	only makes sense for low-energy regions where two separate valleys are well defined. For high-energy regions, the states from X and Γ valleys may not be distinguishable, and thus are not valley and Γ by may correspond to a single state in
In the following, we discuss separately two regimes of	
thickness fluctuations Δn are of the same order as the unper- turbed thickness, i.e., $\Delta n \approx n$. This case includes the d-SLs	

-v.ə

arge energy range, we use the effective-mass model described in Sec. III B. The advantage of the EMA method is that we can accily coloulate a large number of eigenstates (not only near-gap states). This permits obtaining a good properties. We have thus modeled a 2000 ML Sasaki-type edges. We calculated heavy-hole states for the hole and X

vertical position of the line indicate its energy and horizontal

FIG. 13. Effective-mass calculated localized states of a 2000 ML d-SL.

FIG. 14. Effective-mass calculated density of states of (a) the (001)-ordered $(GaAs)_2/(AlAs)_2$ and (b) Sasaki-type disordered superlattices, and the localization lengths (c) L_{eff} , (d) γ^{-1} of the disordered superlattice. The conduction-band energy is measured from the bulk GaAs CBM and the valence-band energy is measured from the bulk GaAs VBM.

a multiband calculation. A very interesting fact is the peaks in the DOS of X valley electronic states. To understand these peaks, we have calculated the DOS for the $(GaAs)_2/(AlAs)_2$ ordered superlattice. The results are shown in Fig. 14(a). It is evident that the peaks of X valley states of the d-SL in Fig. 14(b) are the remnants of the peaks seen in Fig. 14(a) for the a-SL with some shifts. On the other hand, for Γ valley states

and heavy-hole states, there is only one peak in the ordered superlattice, thus their DOS of d-SL have simple structures.

The effective localization length L_{eff} [Eq. (16)] is shown in Fig. 14(c). Notice that L_{eff} increases a bit near the band edge. As described by the Lifshits theory, this phenomenon is due to consecutive wide potential wells. At energy far away from the band edge L_{eff} of the X values electron states and heavy-hole states bend down. Part of the reason is that we used the boundary condition of Eq. (9). As a result, for very large F_{-} when the effect of the potential is no longer important, the mass confinement still plays an important role. This

length γ as described in Sec. IV C. It turns out that this γ is just the exponential growth rate of $A_{N+1}(E)$ [defined in Eq. (14), which does not equal A_1 for arbitrary E] as a function of N. If E is an exact eigenvalue ϵ_i of an localized state, then $A_{N+1} = A_1$, thus, the magnitude of A_{N+1} is O(1). How-

 $A_{N+1}(\overline{E})$ directly and the result is accurate and reliable. The $\gamma^{-1}(E)$ are shown in Fig. 14(d). Note that, in the DOS tail region L is larger than $2\gamma^{-1}$ indicating Lifshits localiza-

calized wave function $\cos(kz)e^{-\gamma|z|}$ with k much larger than $\frac{1}{2}$ In Figs. 14(c) and 14(d) corresponding to the pools of DOS for K wallow states, its $L_{-1}(E)$ and $v^{-1}(E)$ show disc

the dips of $L_{\text{eff}}(E)$ and peaks of $\gamma^{-1}(E)$ can be understood as follows. The existence of the eigenstates around a given

induce a peak in $\gamma^{-1}(E)$. On the other hand, because of

2. Disordered SLs with $\Delta n \approx n$: Band-edge states and oscillator strength

We now focus on the band edges near the band-gap re-

a-SLs. First, we discuss the results of our pseudopotential calculations. In Fig. 11 we show the EPM-calculated dispersion of the band-edge states of the *d*-SL (solid lines) with $p(1)=p(2)=p(3)=\frac{1}{3}$ along the symmetry lines $\overline{\Sigma}$ and $\overline{\Delta}$. The thin horizontal lines denote the band edges of the under-

("binding energy") increases in the order $M \rightarrow \Gamma \rightarrow X$. The large binding energy \tilde{X} is a consequence of the level repulsion of the folded L_{1c} states, which is much sublight for odd values of the repeat period *n* than for even *n* [see Fig. 7(b)]. In the *d*-SL the odd-even selection rule is broken, leading to a stronger level repulsion in the *d*-SL than in the

the conduction-band edge below the ones at \tilde{X} and \tilde{M} by 60 meV, making the *d*-SL a direct-gap material, even though the *o*-SL is indirect (with CBM at \tilde{M}).

In order to establish whether the direct transition does-

show a few band-edge wave functions of an N=1000 ML d-SL, which are plotted using the planar average introduced in Fig 9 For example, the states labeled CB3 and VB1 are localized at the same positions along the chain, and conse-

tor strength f of an optical transition, which is defined as

$$f = \frac{1}{\hbar\omega} \frac{2|\langle c|\mathbf{p}|v\rangle|^2}{3m}.$$
 (17)

Here $\hbar \omega$ is the transition energy, $\langle c | \mathbf{p} | v \rangle$ the dipole matrix

average over the three polarizations x, y, z. In Table V we report calculated values of f for direct transitions in various

dered SLs are 1-2 orders of magnitude smaller than those of the (higher energy) direct transitions
(ii) The transition between an extended state and a localis of the similar strength as a pseudodirect transition,
(iii) Transitions between two states that are localized in the same region along z are of comparable strength

Thus, the transition between the two localized states VB1 and CD2 in Figs. 15(a) and 15(d) is truly direct, rather than

late $\tau = 1$ ns for the VB1 \rightarrow CB3 transition at energy 1.96 eV. These radiative lifetimes are 1000× faster compared to those measured in indirect-gap *o*-SLs ($\tau \approx 5.5 \ \mu$ s at $T=2 \ \text{K}$).⁵⁴

well with measured PL emission lines in d-SLs, which were

direct and pseudodirect transitions can be made by mapping SL states on "parent" states in the zinc-blende structure: Pseudodirect transitions at a SL wave vector $\vec{\mathbf{K}}$ involve one folded state and one state genuine to $\vec{\mathbf{K}}$. An example is the

(the height of the d-SL Brillouin zone is equal to $2\pi/Nd$), the parentage of a d-SL state can still be defined in terms of its

projection on zine-biende states. We have performed such an analysis for a few conduction-band-edge states in (001) *d*-SLs. We found two types of states:

- (i) localized states whose projection on zincblende (ZB)
- (ii) localized states whose projection is peaked at the X_z point of the ZB Brillouin zone.

In real space, the C like states are localized in GaAs rich

gions [e.g., where a rew (carts)_n agers are separated t

3652 J Appl Phys. Vol. 78 No. 11 1 December 1995

nuccu icau to efficient recombination, we have

Mäder Wang and Zunger

[This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to] IP: 128.138.41.170 On: Tue, 14 Jul 2015 11:52:34

		_					
		0.03	(a) EMA Γ electr	ron		-	
		0.02 -	CB3=0.3858	CB1=0.3824	CB2-0 3828	-	
		0.01 -	1	Λ	A	-	
		_ ہ	<u> </u>	/\	<u> </u>		
		0.03		n j			
		0.02					
	nplitude	0.02 - 0.01 -		CB2=0.2684	CB1=	0.2595	
jē . — 9 <u>———</u>	i		(d) FPM hole				
	fund	0.01 -					
· <u></u>				VB0 0 1070	VD1≍-0.1073		
		0.03		VB2=-0.1070	I		
		0.0	s.	VB2_ 0.1710	VB1=-0.1708		
		0.02		VD2=-0.1710		-	
		0.03					
			and the second se			•	
			(001) growth axis			
	EV. 15. The veloce hard me termar model (Er.W) and enec valence-band states, they are n	uve-mass neasured	s approximation (EMA). The num from bulk GaAs CBM and VBM	nors are the eigenen respectively.) MI disordered superlattice incigies of the states in t.v. i c	obtained by empirical peaks	and
	type-II band alignment of	of the c	ordered (001) SLs. Unlike	in mechanisr	n of localization in bo	h cases is essentially	the
	are I'-like]. Note that the below the $\overline{\Gamma}(X_z)$ state [reproduced by the EMA]	1×1 <i>0</i> Fig. 7(, and w	-SL also has the $I(I_{1c})$ sta (b)]. This band order is n we see below that also for the set below that also for the set below that also for the set of	te concentrat ot states is in ne tration R .	tion of δ layers, an inc ntroduced, which are de Unlike in the case of the	reasing number of bougenerate at small conception δ layer δ and δ layer δ and δ layer δ and δ layer \delta	ind en- ers,
		41	6 .1 1 J 1	10 1	· · · · · · · · · · · · · · · · · · ·		**
	£1	. m. t. t.	TITA TTE :	1.01			
							<u> </u>
This art	icle is copyrighted as indicat	ed in the	e article. Reuse of AIP content i	s subject to the ter	ms at: http://scitation.aip.org	/termsconditions. Downloa	ded to 1 IP:

labels are localized at the same positions along 7 i.e.

valence-band n	naxin	num	(in cas	e of	a degener	ate	VBM	the	squ	iare	d dip	ole
matrix element	s are	avera	aged o	ver t	he degene	rate	mani	fold). Fe	or th	ie di	sor-
dered systems, respectively.	the	final	states	are	identified	in	Figs.	9, 1	10,	15,	and	16,

Final state

 Γ_{1c}

n,

System

Bulk GaAs

n, r 📖

Energy

(eV)

1.52

8-1

f

4.03

10];

(ii) the band-gap reduction is slightly larger for the po-SL than for the d-SL at equal R (see Fig. 12).

Indeed, PL emission lines have been measured at energies as low as 1.87 eV,⁶⁶ in agreement with our calculated band gap of 1.87 eV. The CB1 and VB1+2 states are localized in a region where five (GaAs)₃ wells are separated by four

	ATASUMBASI		7.112	7.71	
	(AIAS) ₂ /(GaAS) ₂	$\frac{1}{D}(X_z)$	2.09	0.08	in the deliber a submitted the makeholity to the the mal
· ,	GaAs o layer	CB1	2.04	1.07	
£	a-SL po-SL	CB3 CB1	1.96	1.68 2.76	distribution function of the po-SL leads to LRO (see Fig. 4), which causes an enhancement of the structure factor $ S(k_n) ^2$
R a	ianonai avoiagos gi	ve uto 5120 01 (01 uic 4-11 1-	theory, which could also explain why LKO present in the
<u>, </u>	trons. This asymmetric 1D one-band models	ry is contrary to and reflects the	expectations ba e strong band co	sed on oupling	Next, we calculate the Sasaki-type d -SL using the effective-mass model. The EMA results are also shown in
	because the kinetic	energy becomes	increasingly do	minant	hand adapt states for the holes. The highest hole states are
	partially ordered SL tally by Arent <i>et al.</i> ⁴² depicted in Fig. 16. observed in the <i>d</i> -SL (i) Occupied and	(po-SL), which v ⁵ The correspond While the trenc s two distinct fe unoccupied leve	hu-euge energies was studied expe ling wave function ds are similar to eatures are notew els with corresp	or the erimen- ons are o those vorthy: onding	wave-function shape; the eigenenergies differ by only 3 meV. The wave functions are localized at positions where consecu- tive wide GaAs wells are separated by thin AlAs barriers. For electron states, the situation is more complicated. For EMA states, again, the location of the localized states is simply determined by the geometry of the potential. For ex- ample, the EMA Γ valley states in Fig. 15(a) are localized where a few consecutive wide ($n=3$) GaAs wells are sepa- rated by thin ($n=1$) AlAs barriers. Thus, these EMA Γ valley states have the same locations as the EMA hole states as
	- 10.0 - 4 0.00 - 4 0.00		<u> </u>	-	states [Fig. 15(b)], on the other hand, are localized where a few consecutive wide $(n=3)$ AlAs wells are separated by this $(n=1)$ (set a begin from the EMA colored are
	0.02				the 1 valley derived states. The projection analysis described
					EMA results: The d -SL has a pseudodirect band gap in the
	0.05	<u>)</u>	<u>I</u>	J	description. ⁶⁷ However, for the wave functions we do get an
	FIG. 16. Pseudopotential	(001) growth	h axis verage of the wave f	functions	derived CB2 state in Fig. 15(a). Thus, the EMA can still be useful to describe some properties of the electron state in the d_{SL} The fact that we do not get agreement for all other
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Let the back of the state		<u>re er 1</u> -4		

0004 0. Appl. 1 1133., 101. 70, 110. 11, 1 December 1330

ויומעכי, ייזמווץ, מווע בעוועכו

[Inis article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to] IP: 128.138.41.170 On: Tue. 14 Jul 2015 11:52:34

FIG. 17. Pseudopotential calculated gap levels in the presence of 1 ML thickness fluctuations in $(AlAs)_n/(GaAs)_n$ superlattices along (a) (111) and (b) (001), as a function of period n. Energies are measured with respect to the band extrema of the ideal $n \times n$ SL (see Fig. 7). R=1 and $R \rightarrow 0$ denote, respectively, the concentrated and dilute limit of chain mutations [Eq. (3)].

tala.	2 Disordered Classith Andr	
	Fig. 17 relative to the band edges of the ideal SLS (the en- ergy zero, see Fig. 7). We see that:	
	(i) The hand-gap reductions $\Lambda F = \Lambda s_{1} + \Lambda s_{2}$ decay	0.04
	direction; they are 100, 67, 29, and 14 meV for $n=2$, 4, 6, and 10 in the $\langle 111 \rangle$ direction, and 133, 64, 36,	0.02 CB
<u> </u>		
	("band-gap pinning") of the number of chain muta- tions. In order to explain these findings, we discuss the inter- mediate case of the $n=6$ (111) SL where the VBM is al-	$\begin{array}{c} \Psi_{VB} \\ \Psi_{V}$
•	ready pinned (independent of R), but where the CBM still shows dispersion with R (see Fig. 17). Figure 18(a) shows the CBM and VBM wave functions for the $R=1$ SL. The	Ψ_{CB}
	minimal amplitude in the AIAs barriers and maximal ampli- tude on the two neighboring mutated (7 ML) GaAs wells	
	resembles a bound state in a coupled double quantum well. The hole wave function at the VBM is likewise localized on a number of mutated. 7 ML GaAs wells [Fig. 18(a)]; in con-	0.02
<u>.</u>	tern of the VBM wave function is that these states are in fact decoupled, quantum-well confined states, which are degen-	Position along [111] (ML)
	erate in energy within the accuracy of our calculation ($\lesssim 0.1$ meV). A typical hole and electron wave function localized on an isolated (GaAs) ₇ mutation in an otherwise ideal 6×6 (111) SL are shown in Fig. 18(k). We see that the hole mean	FIG. 18. Pseudopotential calculated planar averages of wave functions squared of the CBM and VBM in the (AlAs) ₆ /(GaAs) ₆ SL along $\langle 111 \rangle$ with ± 1 layer-thickness fluctuations. Hole wave functions are plotted in the
} ∎	concentrated $(R=1)$ mutations [Fig. 18(a)], and its binding energy $\Delta \varepsilon_h(R \rightarrow 0) = 11$ meV equals the value at $R=1$. At the CBM, the larger penetration of the wave function into	a 6×6 SL host. The rectangular lines show the growth sequence of the SL, with GaAs layers represented by wells, and AlAs layers represented by barriers, respectively. The vertical arrows in (a) indicate the 7-ML-thick, "mutated" wells.

states should be observable as photoluminescence centers whose energy is below the absorption edge of the underlying "ideal" SL structure. This photoluminescence will lack phonon lines, because the optical transitions are direct in the

good quantum number), and because the k_z selection rule is relaxed by vertical disorder. Indeed, while we have shown in Sec. IV A that ideal $\langle 111 \rangle$ (AlAs)_n /(GaAs)_n SLs have a direct band gap with a type-I band arrangement, Cingolani and co-workers⁶¹ noted a ~100 meV red shift of the photoluminescence at 1.80 eV relative to the absorption in $\langle 211 \rangle_{0}$ ($\langle 211 \rangle_{0}$), $\langle 111 \rangle_{0}$ be, interpreting this as reflecting a travely been determined by the second sec

the red-shifted photoluminescence originates from thicknessfluctuation bound states. Our calculated band gap of the n=6superlattice with ± 1 ML thickness fluctuations is 1.78 eV for R=1, and 1.80 eV for $R\rightarrow 0$, close to their observed photoluminescence peak position (1.80 eV).⁶¹ Recall that chemical intermixing leads to a blue shift of the band gap (see Table II), whereas larger thickness fluctuation is needed to explain the observed 100 meV red shift.

Figure 17 shows that the bound states of isolated mutations $(R \rightarrow 0)$ merge with those of concentrated layerthickness fluctuations $(R \rightarrow 1)$ at some pinning period n_p . At this point the band-gap reduction is pinned at the value

$$\Delta E_{g}(R) = \lim \Delta E_{g}(R) = \Delta \varepsilon_{e} + \Delta \varepsilon_{h}, \qquad (18)$$

where $\Delta \varepsilon_e$ ($\Delta \varepsilon_h$) is the electron (hole) binding energy of an isolated ($R \rightarrow 0$) layer mutation. Qualitatively, Eq. (18) can be understood in terms of the 1D effective-mass picture (Sec. III B). Each of the (n+1) ML mutations gives rise to a bound state below the band edge of the $n \times n$ SL.^{20,14} For very large n, when the quantum wells are completely decoupled (the tunneling probability and, hence miniband width, decrease exponentially with n), the SL energy spectrum is simply that of degenerate single quantum wells of thicknesses n' with eigenenergies $\varepsilon_v(n)$. Hence, the extra binding energy of an $(n + \Delta n)$ ML mutation approaches asymptotically

where $\varepsilon_0(n)$ is the ground-state energy of a carrier with mass m^* in an *n*-ML-wide quantum well, which scales like

Eq. (19) $\Delta \varepsilon_e \approx 10.0$, 2.4, and 0.7 meV for $n \approx 20$, 50, and 100 in the (111) SL [the last equality of Eq. (10) gives 14.2, 2.0, and 0.8 meV, respectively]. The band-gap reduction for a

- (i) The n=1 SL has an indirect band gap at R; Insufficient interfacial abruptness in the experimentally studied samples⁵⁴ leads instead to an X-derived CBM.
 (ii) For n < 4, the M(X = folded) states and the V(X = folded).
- (iii) The crossover from AlAs-like $\overline{\Gamma}_{1c}(X_z)$ (type II) to GaAs-like $\overline{\Gamma}_{1c}(\Gamma_{1c})$ (type I) happens around n=8.

(b) (111)=ordered superlattices:

- (i) $\overline{\Gamma}_{1c}(\Gamma_{1c})$ is the CBM (type I) for all *n*;
- (ii) There is a strong even-odd oscillation of the CBM energy due to mixing.

ordered SLs, Cingolani and co-workers⁶¹ found for n=6 a type-II SL with a ~100 meV red shift between absorption and PL; we find that lateral interfacial intermixing can not explain this discrepancy, but mono-layer thickness fluctuations in the measured sample do resolve the disagreement.

(c) Single δ layer doping in *o*-SL:

- Δ (GoAs), S layer in (GoAs), /(AlAs), (001) SL produces an electron and a hole bound state with binding energies $\Delta \epsilon_e = 18$ meV and $\Delta \epsilon_h = 37$ meV, respectively;
- (ii) An (AlAs)₃ δ layer in (GaAs)₂/(AlAs)₂ (001) SL pro-

(d) An ordered array of δ layers:

The bound states in neighboring δ layers start to have large interaction when their distance is less than 20 ML.

- (e) A disordered SL with $\Delta n \approx n$ (i.e., n = 1,2,3):
- (i) There is a 130 meV red shift in the band gap compared with the o-SL;

(iii) The conduction hand minimum is at $\overline{\Gamma}$ not at \overline{V} as for the n=2 o-SL

(iii) The conduction-band-edge states are more T-like than X-like thus the oscillator strength is as large as the

(iv) The band-edge state localization length of the *d*-SL is about the same (20 ML) as the δ layer bound state; (v) The localization lengths increase as the energy moves

there is no mobility edge;

The DOS of the d-SL has a peak near the edge of o-SL DOS and has a tail into the band-gap region; if

V. CONCLUSIONS

Our main conclusions can be summarized as follows. (a) (001)-ordered superlattices: (f) A disordered SL with $\Delta n \ll n$:

For $\Delta n=1$ and n>6, the band-edge energies are nearly pinned at their δ doping level, independent of the magnitude of the disorder.

59 LAnni Dhua Val 70 Na 11 1 December 1005

This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to] IP: 128.138.41.170 On: Tue. 14 Jul 2015 11:52:34

ACKNOWLEDGMENTS The authors thank Dr. S. H. Wei for many helpful dis- cussions and advice. This work was supported by the office of Energy Research Materials Science Division U.S. De-	 ³³I. M. Lifshits, S. A. Gredeskul, and L. A. Pastur, <i>Introduction to the Theory of Disordered Systems</i> (Wiley, New York, 1987). ³⁴R. E. Borland, Proc. R. Soc. London Ser. A 274, 529 (1963). ³⁵F. Laruelle and B. Etienne, Phys. Rev. B 37, 4816 (1988). ³⁶K. Hirose, D. Y. K. Ko, and H. Kamimura, J. Phys. Condens. Matter 4,
¹ A. Ourmazd, D. W. Taylor, J. Cunningham, and C. W. Tu, Phys. Rev. Lett. 62, 933 (1989).	 ³⁷D. B. Laks, SH. Wei, and A. Zunger, Phys. Rev. Lett. 69, 3766 (1992). ³⁸E. G. Wang, J. H. Xu, W. P. Su, and C. S. Ting, Appl. Phys. Lett. 63, 1411 (1993). ³⁹E. G. Wang, J. H. Xu, W. P. Su, and C. S. Ting, Appl. Phys. Lett. 64, 443
 ³B. Jusserand, F. Mollot, R. Planel, E. Molinari, and S. Baroni, Surf. Sci. 267, 171 (1992). ⁴R. M. Feenstra, D. A. Collins, D. ZY. Ting, M. W. Wang, and T. C. 	 ⁴¹ V. Kumar and G. Ananthakrishna, Phys. Rev. Lett. 59, 1476 (1987). ⁴² X. Chen and S. Xiong, Phys. Rev. B 48, 5273 (1993). ⁴³ M. Kasu, T. Yamamoto, S. Noda, and A. Sasaki, Appl. Phys. Lett. 59, 800
N. Miller, J. Vac. Sci. Technol. B 5, 1191 (1987).	⁴⁵ D. J. Arent. R. G. Alonso. G. S. Horner. D. Levi. M. Bode. A. Mascaren-
⁷ R. F. Kopf, E. F. Schubert, <u>T. D. Harris</u> , and R. S. Becker, Appl. Phys.	46 T Yamamata M Kasu S Nada and A Sasaki I Appl Dave 68 5318
 Phys. Lett. 58, 2755 (1991). ⁹C. Parks, A. K. Ramdas, M. R. Melloch, and L. R. Ram-Mohan, Phys. Rev. B 48, 5413 (1993). ¹⁰J. R. Meyer, A. R. Reisinger, K. A. Harris, R. W. Yanka, and L. M. Mohnkern, Appl. Phys. Lett. 64, 545 (1994). ¹¹J. D. Dow, S. Y. Ren, and K. Hess, Phys. Rev. B 25, 6218 (1982). ¹²S. Das Sarma, A. Kobayashi, and R. E. Prange, Phys. Rev. Lett. 56, 1280 (1986). ¹³R. Merlin, K. Bajema, R. Clarke, FY. Juang, and P. K. Bhattacharya, Phys. Rev. Lett. 55, 1768 (1985). ¹⁴ <u>A</u> 'Depression A Decreme and G Decreme and G Decreme Phys. Lett. 57, 1464 (1986). ¹⁵A. Sasaki, M. Kasu, T. Yamamoto, and S. Noda, Jpn. J. Appl. Phys. 28, 166 C. A. Warwick and R. F. Kopf, Appl. Phys. Lett. 60, 386 (1992). ¹⁷V. I. Belitsky, T. Ruf, J. Spitzer, and M. Cardona, Phys. Rev. B 49, 8263 (1994). ¹⁸O. A. Warwick and R. F. Kopf, Appl. Phys. Lett. 60, 1000 (1994). 	 K. A. Madet, E. W. Wang, and A. Zunger, Phys. Rev. Lett. 14, 2000 (1995). ⁴⁸ K. A. Mäder and A. Zunger, Phys. Rev. B 50, 17 393 (1994). ⁴⁹ LW. Wang and A. Zunger, J. Chem. Phys. 100, 2394 (1994). ⁵⁰ B. Jonsson and S. T. Eng, IEEE J. Quantum Electron. QE-26, 2025 (1990). ⁵¹ If the δ layers are arranged periodically in a host SL, R of Eq. (3) still bears the meaning of the "concentration" of δ layers, and R∝L⁻¹, where L is the (fixed) distance between the δ layers. ⁵² SH. Wei and A. Zunger, J. Appl. Phys. 63, 5794 (1988). ⁵³ D. M. Bylander and L. Kleinman, Phys. Rev. B34, 5280 (1986). ⁵⁴ K. W. D. Schmudt, W. D. Stuge, L. N. Fiehter, and K. W. West, J. Lumin. 59, 163 (1994). ⁵⁵ For a=5 and n=6 we find that the lowest conduction state at Z is ≤10 meV lower than 1(X_z), making these SLs indirect-gap materials (see Table III in Ref. 48); however, this energy difference is too small to allow a conclusive prediction on the pseudodirect/indirect nature of the band pan.
 ²¹ H. X. Jiang and J. Y. Lin, Superlattices and Microstructures 3, 689 (1987). ²² D. A. Davies, M. J. Kelly, and T. M. Kerr, Appl. Phys. 147, 52, 2641. 	⁵⁸ G. P. Zi. M. K. G. L. G. L. L. D. Z. Lett. 04 , 2602 (1994). ⁶⁰ Z. Ikonic, G. P. Srivastava, and J. C. Inkson, Phys. Rev. B 46 , 15 150 (1992)
(1988).	⁶¹ R. Cingolani, L. Tapfer, and K. Ploog, Appl. Phys. Lett. 56 , 1233 (1990).
(1 <u>000)</u>	⁰³ K A Möder and A Baldarescahi Motor Dec. Son Sumn Droc 740 507
Sci_Technol A 11_923 (1993)	⁶⁵ M. Kasu. T. Yamamoto. S. Noda. and A. Sasaki. Jpn. J. Appl. Phys. 29.
 ²⁸ M. Proctor, G. Oelgart, H. Rhan, and FK. Reinhart, Appl. Phys. Lett. 64, 3154 (1994). ²⁹ P. W. Anderson, Phys. Rev. 109, 1492 (1958). ³⁰ I. M. Lifshits, Sov. Phys. JETP 17, 1159 (1963). ³¹ P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985). ³² P. Phillips, Ann. Rev. Phys. Chem. 44, 115 (1993). 	for our computational unit cell as was used for the MBE growth of the po-SL. ⁶⁷ This discrepancy can be traced back to the EMA error in the $(GaAs)_n(AIAs)_n$, o -SL of $n \sim 1$, 2 in Fig. 7. Around $n \sim 1$, 2, the EMA $\overline{\Gamma}_c(\Gamma)$ (001) states have much larger energies than their EPM counterparts. Apparently, this difference retains in the <i>d</i> -SL.

* **

•-----

J. Appl. Phys., Vol. 78, No. 11, 1 December 1995 Mäder, Wang, and Zunger 6657 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to] IP: