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Abstract

When conducting inference for the average treatment e�ect on the treated with a Syn-

thetic Control Estimator, the vector of control weights is a nuisance parameter which is often



1 Introduction

In the context of method of moments estimation, if the moment conditions jointly identify

a subvector of the parameters, then a standard estimation method such as General Method

of Moments (GMM) is generally a consistent estimator for that subvector. However, if the

remaining subvector is unidenti�ed, then this remaining parameter cannot be consistently

estimated and as a result the estimates for the identi�ed subvector are not asymptotically

normal (see, for example, Andrews and Cheng (2012)), which signi�cantly complicates in-

ference. Additionally, if a nuisance parameter is at the boundary of the parameter space or

close to the boundary relative to the sample size, then this can also result in our estimates

for the parameter of interest not being asymptotically normal (see, for example, Andrews

(1999) and Geyer (1994)). Lastly, if the full vector is high dimensional, this can complicate

standard asymptotic normality results even when the subvector we would like to perform

inference on is low dimensional. I propose an estimation method that aims to simultaneously

overcome these complications to obtain an estimate for an identi�ed parameter of interest

that is asymptotically normal even when a nuisance parameter is partially identi�ed, on or

near the boundary of the parameter space, and, in some cases, high dimensional.

The procedure I propose can be decomposed into three steps. In the �rst step, regu-

larized estimates of all parameters are found by minimizing a penalty function subject to

the constraint that the sample moment conditions are close to zero. The primary purpose

of this penalty function is to make the estimated nuisance parameter converge to a unique

element of the identi�ed set. We must therefore choose which element of the identi�ed set

we would like our estimate to converge to. Since this choice a�ects the asymptotic variance

of our subsequent estimate of the parameter of interest, I base the penalty function on an

estimate of the asymptotic variance as a function of the nuisance parameter, provided that

this asymptotic variance function can be estimated su�ciently accurately. In cases where the

asymptotic variance cannot be accurately estimated, such as when using time-series or panel

data and the degree of temporal dependence is high relative to the number of time periods,
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I discuss alternative ways of choosing the penalty function in Section 3. The second step in

my procedure is to use Neyman orthogonalization to construct a set of moment conditions

that are orthogonal with respect to the nuisance parameter. This involves introducing a new

parameter that is chosen to make the derivative of the moment conditions with respect to

the original nuisance parameter equal to zero. After the estimated nuisance parameters have

been plugged into the orthogonal moment conditions, the third step is to use these moment

conditions to re-estimate the parameter of interest. In Section 2, I give two suggestions of

how this can be done and provide asymptotic normality results for both methods.

My primary application of this approach is as a Synthetic Control Estimator (SCE)

which gives an asymptotically normal estimate of the average treatment e�ect on the treated

(ATT). Several other inference methods have been proposed for SCEs. The placebo method

of Abadie et al. (2010) is commonly used in practice and, as previously noted (see Abadie

et al. (2010) and Abadie et al. (2015)), corresponds to a traditional Fisher Randomization

Test when treatment is randomly assigned. While this would mean that this test have

exact size from a design-based perspective, this condition is unreali01(elaceb)-27(o)-298(metho)-27(d)]TJ 0 -23.908 Td [(of)]TJ
0.36previ0.36472





where the parameter of interest is identi�ed, we can focus on conducting the estimation

in a way that makes inference simpler for that parameter (by making its estimated values

asymptotically normal) and possibly in a way that makes the estimates of that parameter

more precise (by minimizing its asymptotic variance). On the other hand, methods that

conduct inference on the whole identi�ed set have the advantage that they can be used when

both the parameter of interest and the nuisance parameter are partially identi�ed.

This work also extends the literature on the Neyman Orthogonalized Score. While the

technique dates back to Neyman (1959), several more recent papers have used it as a way

to achieve asymptotic normality after obtaining an estimate of a high-dimensional nuisance

parameter using a regularization penalty or machine learning technique (e.g., Belloni et al.

(2018), Ning and Liu (2017), Chernozhukov et al. (2015), Belloni et al. (2014), and Cher-

nozhukov et al. (2018)). Many of these methods estimate the nuisance parameter with

LASSO. While this can be a powerful technique when the nuisance parameter is high di-

mensional but has a sparse, point-identi�ed value, if the nuisance parameter is partially

identi�ed, the LASSO penalty may often be insu�cient for the estimates to converge to a

speci�c vector. I help extend this literature by showing how the Neyman Orthogonalized

Score can be applied in cases where the nuisance parameter is partially identi�ed. The lit-

erature on optimal instruments is also related, and in particular, Singh et al. (2020) take

a similar approach as I do here, where they choose the function of the instruments that

minimizes the estimated asymptotic variance for the parameter of interest. In section 5, I

give an example of how my method can be applied to the optimal choice of instruments.

In Section 2, I discuss how a set of moment conditions can be combined with initial

regularized estimates of the parameters to create the orthogonal moment conditions and

then how these orthogonal moment conditions can be used to estimate the parameter of

interest. I discuss this �rst to show what properties we want the regularized estimates of

the parameters to satisfy, and how the limiting values of the estimated nuisance parameters

inuence the asymptotic variance for the estimated parameter of interest. In Section 3,
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I then show when the regularized estimates satisfy these conditions and discuss how to

adjust the procedure to handle cases where the asymptotic variance cannot be consistently
















