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may be extremely complicated, see for instance [20,12,14] and ref-
erences within.

A piecewise-smooth, continuous system is one that is every-
where continuous but non-differentiable on switching manifolds.
In such a system, the collision of a mathematical equilibrium
(i.e., steady state, abbreviated to equilibrium throughout this pa-
per) with a switching manifold may give rise to a discontinuous
bifurcation. As the equilibrium crosses the switching manifold, its
associated eigenvalues generically change discontinuously. This
may produce a stability change and bifurcation. In two-dimen-
sional systems, all codimension-one discontinuous bifurcations
have been classified [22], but in higher dimensions there are more
allowable geometries and no general classification is known. See
for instance [23,24] for recent investigations into three-dimen-
sional systems.

In this paper we present an analysis of discontinuity induced
bifurcations in the eight-dimensional S. cerevisiae model of Jones
and Kompala [9]. The model equations are stated in Section 2. In
Section 3 we illustrate a two-parameter bifurcation set indicating
parameter values at which stable oscillations occur. The bifurca-
tion set also shows curves corresponding to codimension-one dis-
continuous bifurcations. These bifurcations are analogous to
saddle-node and Andronov–Hopf bifurcations in smooth systems.
Bifurcations relating to stable oscillations are described in Section
4. We observe period-adding sequences over small regions in
parameter space. In Section 5 we provide rigorous unfoldings of
codimension-two scenarios seen in the bifurcation set from a gen-
eral viewpoint. Finally Section 6 presents conclusions.
2. A model of the growth of S. cerevisiae

Jones and Kompala [9] give the following model equations:
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dt ¼
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[9];







local bifurcations. In Fig. 6, the period appears to go to infinity in
the period-adding sequence. Within the extremely small regions



simultaneous occurrence of a saddle-node bifurcation and a dis-
continuous bifurcation; our results are summarized in Fig. 7A.
The tangency illustrated in this figure matches our numerically
computed bifurcation set, specifically point (e) of Fig. 2B. Secondly
we will unfold the simultaneous occurrence of a Hopf bifurcation
and a discontinuous bifurcation, see Fig. 7B. This theoretical pre-
diction also matches numerical results, specifically the points (a),
(c) and (d) of Fig. 2.

The results of this section are presented formally in Theorems
5.1 and 5.4, proofs of which are given in Appendix A. Proofs to
Lemmas 5.2 and 5.3 are described in [27]. Throughout this sec-
tion we use arbitrary parameters l and g



where��
detðDxf ðRÞð0; 0;0ÞÞ–0; ð5:2Þ

that is, for the right-half-system, zero is not an associated eigen-
value of the origin when l ¼ g ¼ 0. Then by the implicit function
theorem the right-half-system has an equilibrium, x�ðRÞðl;gÞ, with
x�ðRÞð0;0Þ ¼ 0 and that depends upon the parameters as a Ck func-
tion in some neighborhood of the origin. As is generically the case,
we may assume the distance the equilibrium is from the switching
manifold varies linearly with some linear combination of the
parameters. Without loss of generality we may assume l is a suit-
able choice; that is

@x�ðRÞ1 ð0;0Þ
@l

–0: ð5:3Þ

In this case, the implicit function theorem implies there is a Ck func-
tion /1 : R! R such that x�ðRÞ1 ð/1ðgÞ;gÞ ¼ 0. In other words when
l ¼ /ðgÞ, the equilibrium lies on the switching manifold. By per-
forming the nonlinear change of coordinates

l#l� /1ðgÞ;
x#x� x�ðRÞð/1ðgÞ;gÞ;

we may factor l out of the constant term in the system, i.e.,

f ðLÞð0;l;gÞ ¼ f ðRÞð0;l;gÞ ¼ lbðl;gÞ þ oðkÞ;

where b is Ck�1. Notice the transformation does not alter the switch-
ing manifold. The system is now

_x ¼ f ðLÞðx;l;gÞ; x1 6 0
f ðRÞðx;l;gÞ; x1 P 0

(
; ð5:4Þ

with

f ðiÞðx;l;gÞ ¼ lbðl;gÞ þ Aiðl;gÞxþ Oðjxj2Þ þ oðkÞ; ð5:5Þ

where AL and AR are N � N matrices that are Ck�1 functions of l and g.
Since (5.4) is continuous, the matrices AL and AR have matching

elements in all but possibly their first columns. It directly follows
that the adjugate matrices (if A is non-singular, then
adjðAÞ � detðAÞA�1) of AL and AR share the same first row



Lemma 5.3. Consider the system (5.4) with (5.5) and assume that
N ¼ 2 and k P 5. Suppose ALðl;gÞ has complex eigenvalues
k� ¼ m� ix with

(i) mð
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where n2 is a generalized eigenvector and u 2 RN , span Ec . The local
center manifold, Wc , is tangent to Ec , thus on Wc ,

x̂ ¼ Hðx̂1;l;gÞ ¼ x̂1e1 þ lfþ Oð2Þ;

where f 2 RN is equal to u except that its first element is zero. No-
tice nTð0;0ÞV ¼ eT

1 thus

x̂1 ¼ eT
1 x̂ ¼ nTð0;0ÞVx̂ ¼ nTð0;0Þx:

Restricted to Wc the dynamics (A.2) become the Ck�1 system

_̂x1 ¼ lnTð0;0Þbðl;gÞ þ nTð0;0ÞALðl;gÞVHðx̂1;l;gÞ
þ nTð0; 0ÞgLðVHðx̂1;l;gÞ;l;gÞ; ðA:4Þ

where gLðx;l;gÞ denotes all terms of f L that are nonlinear in x. By
expanding each term in

1Þxx1;l;x1lðx1;1Þx1;1gÞx1;1ll1Þx1lgÞ
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