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Krešimir Josić§

Abstract. Organisms and ecological groups accumulate evidence to make decisions. Classic experi-
ments and theoretical studies have explored this process when the correct choice is fixed
during each trial. However, we live in a constantly changing world. What effect does such
impermanence have on classical results about decision making? To address this question
we use sequential analysis to derive a tractable model of evidence accumulation when the
correct option changes in time. Our analysis shows that ideal observers discount prior
evidence at a rate determined by the volatility of the environment, and the dynamics of
evidence accumulation is governed by the information gained over an average environ-
mental epoch. A plausible neural implementation of an optimal observer in a changing
environment shows that, in contrast to previous models, neural populations represent-
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evidence to make decisions. However, information about the state of the world is
typically incomplete, and perception is noisy. Therefore, animals make choices based
on uncertain evidence. The case of an observer deciding between two alternatives
based on a series of noisy measurements has been studied extensively when the envi-
ronment is static [8, 23, 32, 45]. In this case, humans [36] and other mammals [11, 24]
can accumulate incoming evidence near optimally to reach a decision.

Stochastic accumulator models provide a plausible neural implementation of de-
cision making between two or more alternatives [4,43]. These models are analytically
tractable [8], and can implement optimal decision strategies [10]. Remarkably, there
is also a parallel between these models and experimentally observed neural activity.
Recordings in animals during a decision task suggest that neural activity reflects the
weight of evidence for one of the choices [24].

A key assumption in many models is that the correct choice is fixed in time;
i.e., decisions are made in a static environment. This assumption may hold in the
laboratory, but natural environments are seldom static [17, 34]. Recent experimen-
tal evidence suggests that human observers integrate noisy measurements near op-
timally even when the state of the environment changes. For instance, when ob-
servers need to decide between two options and the corresponding reward changes in
a history-dependent manner, human behavior approximates that of a Bayes optimal
observer [5]. An important feature of evidence accumulation in volatile environments
is an increase in learning rate when recent observations do not support a current es-
timate [31]. Both behavioral and fMRI data show that human subjects employ this
strategy when they must predict the position of a stochastically moving target [29].
Experimental work thus suggests that humans adjust evidence valuation to account
for environmental variability.

However, the dynamics of decision making in changing environments has not been
fully investigated. To address this question we extend optimal stochastic accumulator
models to a changing environment. These extensions are amenable to analysis and
reveal that an optimal observer discounts old information at a rate adapted to the
frequency of environmental changes. As a result, the certainty that can be attained
about any of the choices is limited. Our approach frames the decision-making process
in terms of a first passage problem for a doubly stochastic nonlinear model that can be
examined using techniques of nonlinear dynamics. Extending previous work, we also
identify accurate piecewise linear approximations to the nonlinear model. This model
also suggests a biophysical neural implementation for evidence integrators consisting
of neural populations whose activity represents the evidence in favor of a particular
choice. When the environment is not static, optimal evidence discounting can be
performed exactly by populations coupled through excitation. We also show that
the computation can be well approximated by appropriately tuned classical linear
population models [10, 30, 41, 44].

2. Optimal Decisions in a Static Environment. We develop our model in a way
that parallels the case of a static environment with two possible states. We therefore
start with the derivation of the recursive equation for the log-likelihood ratio of the
two states, and the approximating stochastic differential equation (SDE), when the
underlying state is fixed in time.

To make a decision, an optimal observer integrates a stream of measurements
to infer the present environmental state. In the static case, this can be done using
sequential analysis [12, 45]: An observer makes a stream of independent, noisy mea-
surements, ξ1:n = (ξ1, ξ2, . . . , ξn), at equally spaced times, t1:n = (t1, t2, . . . , tn). The
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Appendix D)

(4.1) Ln,i =
Pr(ξ1:n−1)

Pr(ξ1:n)
fi(ξn)

⎛⎝⎛⎝1 −
∑
j �=i

Δtεji

⎞⎠Ln−1,i +
∑
j �=i

ΔtεijLn−1,j

⎞⎠ .

Again after taking logarithms, xn,i = ln Ln,i, we can approximate the discrete stochas-
tic process in (4.1) with an SDE:

dx = g(t)dt + Λ(t)dWt + K(x)dt,(4.2)

where the drift has components gi(t) = 1
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recorded neural activity and responses of monkeys performing two-alternative forced-
choice decision tasks, where single trial stimuli have stationary statistics [24]. Even
when reward rates are varied across trials, animals can adjust their behavior near
optimally from trial to trial in ways that are well captured by mutually inhibitory
models [20]. Interestingly, these networks also provide a plausible model of decision
making in house-hunting honeybee swarms [33]. In previous studies, it has been shown
that a single fixed point can be stabilized in linear population models, as long as the
strength of mutual inhibition is weaker than the leak of individual populations [8,10,
43]. As we will show, a complementary approach in linear population models is to
consider a mutually excitatory network, with arbitrary leak in individual populations.
As with the linear approximations discussed above, such models perform suboptimal
inference in changing environments, but can approach the performance of the ideal
nonlinear discounting process given by (3.3).

Optimal inference in dynamic environments with two states, H+ and H−, can be
performed by mutually excitatory nonlinear neural populations with activities (firing
rates) r+ and r− evolving according to

dr+ = [I+(t) − αr+ + F+(r− − r+)] dt + dW+,(6.1a)

dr− = [I−(t) − αr− + F−(r+ − r−)] dt + dW−,(6.1b)

where the transfer functions are F±(x) = −
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(r+, r−) = I0

κ2−γ2 ·(κ, γ) and I0

κ2−γ2 ·(γ, κ) in either case. Stability of these fixed points

is given by the nonzero eigenvalue λ = −(κ + γ) < 0, so these quasi-equilibria are
always attractive. Note also that the reduced SDE for the difference y = r+ − r−
will take the form dy = [Id(t) − (κ + γ)y] dt + dWd, where Id(t) = I+(t) − I−(t) and
Wd = W+−W−
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7. Discussion.
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(N > 2) alternatives and show that the log probability updates can be approximated
by a nonlinear system of SDEs in the continuum limit. With the appropriate scaling of
the probabilities, fi(ξ) = Pr(ξ|Hi), we can make precise the correspondence between
the discrete and continuum models of posterior probability evolution. Lastly, we
present a derivation for the stochastic integrodifferential equation that represents the
log probability for a continuum of possible environmental states, θ ∈ [a, b].

Note that throughout the appendices, we use notation involving a subscript Δt.
This helps us define a family of stochastic processes indexed by the spacing between
observations Δt = tn − tn−1. For instance, fΔt,±(ξ) represents the probability of
an observation, ξ, in environmental state H± (or, in the language of statistics, when
hypothesis H± holds). This probability changes with the timestep Δt. This approach
allows us to properly take the continuum limit Δt → 0. However, for simplicity we
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where we have conditioned on the state of the environment, H(tn) = H± at time tn.
Replacing the index n
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terms (analogous to the derivation of (A.1) and (A.2)), we can express each proba-
bility Ln,i in terms the probability at the time of the previous observation, Ln−1,j:

Ln,i =
Pr(ξ1:n−1)

Pr(ξ1:n)
Pr(ξn|Hi, tn)

N∑
j=1

εΔt,ijLn−1,j.

Since we are only interested in comparing the magnitude of the probabilities, we can

drop the common prefactor Pr(ξ1:n−1)
Pr(ξ1:n)

and use the fact that
∑N

j=1 εΔt,ji = 1 (since

εΔt,ij is a left stochastic matrix) to write εΔt,ii = 1 −
∑

j �=i εΔt,ji and obtain

(D.1) Ln,i = fΔt,i(ξn)

⎛⎝⎡⎣1 −
∑
j �=i

εΔt,ji

⎤⎦Ln−1,i +
∑
j �=i

εΔt,ijLn−1,j

⎞⎠ ,

where fΔt,i(ξn) = Pr(ξn|Hi, tn). From (D.1), it follows that the log of the rescaled
probabilities, xi := ln Li, satisfies the recursive relation

xn,i − xn−1,i = ln fΔt,i(ξn) + ln

⎛⎝1 −
∑
j �=i

εΔt,ji +
∑
j �=i

εΔt,ije
xn−1,j−xn−1,i

⎞⎠ .

To derive an approximating SDE, we denote by Δxn,i = xn,i − xn−1,i the change
in the log probability due to an observation at time tn. As before, we assume εΔt,ij :=
Δtεij + o(Δt) for i 
= j and drop the higher order terms, giving

Δxn,i = ln fΔt,i(ξn) + ln

⎛⎝1 −
∑
j �=i

Δtεji +
∑
j �=i

Δtεije
xn−1,j−xn−1,i

⎞⎠ .

Assuming Δt � 1, we again use the approximation ln(1 + a) ≈ a for |a| � 1. We
also assume that the change in the log probability, |Δxn,i| � 1, is small over the time
interval, Δt so that

Δxn,i ≡≤

|
∝F∞≈=i
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The correlation of ηi’s is given by

Corrξ[ηi, ηj ] := Corrξ [ ln fΔt,i(ξ), ln fΔt,j(ξ)|H(t)] .

Note that (D.3) is the multiple-alternative version of (B.3). Equivalently, we can
write (D.3) as

Δxt,i ≈ ΔtgΔt,i(t) +
√

ΔtŴΔt,i + Δt
∑
j �=i

(
εije

xt,j−xt,i − εji
)

,

where ŴΔt := (ŴΔt,1, . . . , ŴΔt,N) follows a multivariate Gaussian distribution with
mean zero and covariance matrix ΣΔt given by

ΣΔt,ij =
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Appendix E. Log-Likelihood Ratio for Multiple Alternatives. We can also de-
rive a continuum limit for the log-likelihood ratio for any two choices i, j ∈ {1, 2, . . . , N}.
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where ŴΔt := (ŴΔt,θ)θ∈[a,b]. For θ ∈ [a, b], ŴΔt,θ is a Gaussian process in the sense
that any finite subset of points {θ1, . . . , θn} ∈ [a, b] have a multivariate Gaussian
distribution with mean zero and covariance, ΣΔt,θθ, given by

ΣΔt,θθ′ =
1

Δt
Covξ [ ln fΔt,θ(ξ), ln fΔt,θ′(ξ)|H(t)] .

Finally, taking the limit Δt → 0, and assuming that the limits

(F.3) gθ(t) := lim
Δt→0

gΔt,θ(t) and Σθθ′(t) := lim
Δt→0

ΣΔt,θθ′(t)

are well defined, we obtain the system of SDEs

dxθ = gθ(t)dt + dŴθ(t) +

∫ b

a

(
εθθ′exθ′−xθ − εθ′θ

)
dθ′dt,(F.4)

or equivalently the system of SDEs

dx = g(t)dt + Λ(t)dWt + K(x)dt,

where g(t) =
(
gθ(t)

)
θ∈[a,b]

and Λ(t)Λ(t)T = Σ(t) are defined using the limits in (F.3),

K(x) =
∫ b

a
(εθθ′exθ′−xθ − εθ′θ) dθ′, and the components of Wt are independent Wiener

processes.
While we have formally taken the limit of the discrete (F.2), it is important to

note that establishing the well-posedness of stochastic integrodifferential equations is
not straightforward. Conditions for the existence and uniqueness of solutions to cer-
tain nonlinear stochastic partial differential equations (SPDEs) are demonstrated in
Chapter 7 of [15]. This approach considers the solutions to SPDEs to be random pro-
cesses that take their values in a Hilbert space of functions. Recently, this concept has
been extended to provide general conditions on the constituent functions of stochastic
neural fields to ensure the existence of solutions [19,25]. The form of stochastic neural
fields is closely related to (F.4), since both types of equation possess a linear drift and
a convolution defining a nonlocal coupling between their state variables. It may be
possible to utilize these previous approaches to establish the existence and uniqueness
of solutions to (F.4) in future studies.
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