
A fast reconstruction algorithm for electron microscope tomography

Kristian Sandberg,a,* David N. Mastronarde,b and Gregory Beylkina

a Department of Applied Mathematics, University of Colorado at Boulder, CO 80309, USA
b Boulder Laboratory for 3-D Electron Microscopy of Cells, Department of Molecular, Cellular, and Developmental Biology,

University of Colorado at Boulder, CO 80309, USA

Received 23 May 2003, and in revised form 3 September 2003
Abstract

We have implemented a Fast Fourier Summation algorithm for tomographic reconstruction of three-dimensional biological data

sets obtained via transmission electron microscopy. We designed the fast algorithm to reproduce results obtained by the direct

summation algorithm (also known as filtered or R-weighted backprojection). For two-dimensional images, the new algorithm scales

as OðNhM logMÞ þ OðMN logNÞ operations, where Nh is the number of projection angles and M � N is the size of the reconstructed

image. Three-dimensional reconstructions are constructed from sequences of two-dimensional reconstructions. We demonstrate the

algorithm on real data sets. For typical sizes of data sets, the new algorithm is 1.5–2.5 times faster than using direct summation in

the space domain. The speed advantage is even greater as the size of the data sets grows. The new algorithm allows us to use higher

mail to: kristian.sandberg@colorado.edu


scheme in the Fourier domain. A number of recon-
struction algorithms based on interpolation in the

Fourier domain are available in the literature, see for

example, O�Sullivan (1985), Edholm and Herman

(1987), Schomberg and Timmer (1995), Lanzavecchia

and Bellon (1998), Wald�een (2000), and Potts and Steidl

(2001), and references therein.

Alternatively, fast hierarchical algorithms in the space

domain have been proposed by Brandt et al. (2000) and
by Basu and Bresler (2000). In these algorithms spatial

interpolation is used at each level of subdivision which

makes it difficult to control the resulting accuracy rela-

tive to the direct summation algorithm.

The interpolation techniques in the Fourier domain

in O�Sullivan (1985), Schomberg and Timmer (1995),

and Wald�een (2000) use an approximation that also

yields fast algorithms known as either non-equispaced
fast Fourier transform (NFFT) (see Dutt and Rokhlin,

1993) or unequally spaced fast Fourier transform (US-

FFT) (see Beylkin, 1995). Compared to the interpola-

tion techniques in the Fourier domain, the NFFT and

USFFT algorithms use a (rigorously derived) nearly

optimal relationship between the desired accuracy of the

transform and the speed of the algorithm. In general,

applications of NFFT or USFFT to problems of non-
destructive evaluation are well understood (see e.g.

http://www.bio3d.colorado.edu/imod
http://www.bio3d.colorado.edu/imod


where ds denotes the standard Euclidean measure on the

line. We note that evaluating RhðtÞ for all lines is
equivalent to computing the Radon transform of gðx; zÞ.

Assuming that the measured intensity is described by

IhðtÞ ¼ e�RhðtÞ, our goal is to approximate gðx; zÞ by

measuring IhðtÞ. Sampling RhðtÞ ¼ � ln IhðtÞ at a set of

projection angles h1 < � � � < hl < � � � < hNh and at a set

of distances t0 < � � � < tk < � � � < tM�1, yields the matrix

rkl ¼ RhlðtkÞ; ð3Þ
where k ¼ 0; 1; . . . ;M � 1 and l ¼ 1; 2; . . . ;Nh. Each

column l of the matrix in (3) contains all measurements

for the angle hl.

The problem can now be formulated as follows: given

the measurement data rkl, find an approximation to
gðxm; znÞ, where the points xm; zn form a grid with

m ¼ 1; 2; . . . ;M and n ¼ 1; 2; . . . ;N . In TEM the total

amount of input data is quite significant since such data

are generated from measurements of a large number of

two-dimensional slices of a specimen. Therefore, we not

only need to find an accurate approximation of the den-

sity, but we also need to compute it in an efficient manner.

2.2. Inversion of the Radon transform

As is well known (see e.g. Deans, 1993) the two-di-

mensional density gðx; zÞ can be recovered from the line

integrals RhðtÞ in (2) as
gðx; zÞ ¼
Z p

2

�p
2

ðq � RhÞðtðx; zÞÞdh; ð4Þ

where ‘‘*’’ denotes convolution and q is a filter with the

Fourier transform given by

q̂qðxÞ ¼ jxj: ð5Þ

In practice, this filter is often modified by a bandlimiting

window. For example, if we use

q̂qðxÞ ¼

jxj; jxj6xc;
a smooth transition such that

q̂qð�xcÞ ¼ xc andq̂q � 1
2

� �
¼ 0; xc < jxj6 1

2
;

0; jxj > 1
2
;

8>><
>>:

ð6Þ
where 0 < xc <

1
2

is a user specified parameter, then the
density is approximated by

gðx; zÞ �
Z p

2

�p
2

Z 1
2

�1
2

q̂qðxÞ
Z 1

�1
RhðsÞe2pisx ds

� �
e�2pixt dxdh:

Here, t depends on h, x, and z as in (1), but in what fol-

lows we may suppress this dependence in our notation.

2.3. Direct summation

If we assume that the electron beam is modeled
by line integrals then reconstructing the density of a



specimen from its projections can be viewed as the in-
version of the Radon transform. Many reconstruction

algorithms rely on this fact and solve the inversion

problem by discretizing the inverse Radon transform

(Deans, 1993; Gilbert, 1972). In this section, we describe

the widely used direct summation algorithm (also

known as the filtered or R-weighted back projection).

We discretize (4) and obtain

gðxm; znÞ ¼
XNh

l¼1

wlðq � RhlÞðtðxm; znÞÞ; ð7Þ

where tðxm; znÞ is given by (1) and wl are weights to com-

pensate for unequally spaced angles. For measurements

performed over equally spaced angles, the weights wl are
usually set to one. Since we have measurements only for a

discrete set of values of t, the elements ðq � RhlÞðtðxm; znÞÞ
are estimated from fðq � RhlÞ ðtkÞgM�1

k¼0 by some inter-

polation scheme, usually piecewise linear interpolation.

Let us summarize the steps for estimating the density

gðx; zÞ from the measurements of projections.

1. Filter the data to obtain ðq � RhlÞðtkÞ, k ¼ 0; 1; . . . ;
M � 1 by:
1.1. applying the FFT along the columns of the ma-

trix rkl defined by (3),

1.2. multiplying each element of the transformed ma-

trix by the (pre-computed) filter coefficients and

the weights wl if necessary, and

1.3. applying the inverse FFT column-wise.

2. Sum the result of the previous step to obtain the den-

sity by:
2.1. computing tðxm; znÞ for each given ðxm; znÞ,
2.2. finding ðq � RhlÞðtðxm; znÞÞ by linearly interpolat-

ing ðq � RhlÞðtkÞ, and

2.3. summing the result according to (7).

Step 2 dominates the computational cost since we have

to sum over Nh terms N � M times, for the total com-

putational cost of OðNhMNÞ. Usually Nh, M , and N are

of the same order of magnitude so the above algorithm
has the computational cost OðN 3Þ.
3. Inversion formula in the Fourier domain

In this section, we derive an inversion formula in the

Fourier domain that is equivalent to the direct sum-

mation formula in (7). We will show that if

xm ¼ �xs þ m; m ¼ 1; 2; . . . ;Mf ;

where xs is a shift parameter that depends on the selec-

tion of the coordinate system in the x-variable, then

gðxm; znÞ can be written as

XNh

l¼1

wlðq � RhlÞðtðxm; znÞÞ

¼
Z 1

2

�1
2

XNh

l¼1

vlðxÞe�2pixzn tan hl

 !
e�2pixxm dx;
where

vlðxÞ ¼ wl

cos hl
e

�2pixs
x

cos hl q̂q
x

cos hl

� �
sin px

cos hl
px

cos hl

 !2

�
XM�1

k¼0

RhlðtkÞe
2pik x

cos hl : ð8Þ

In Section 4.2, we will describe a numerical implemen-

tation of this formula that results in a fast OðNhM
logMÞ þ OðMN logNÞ algorithm. We note that shifting

the coordinate system in x by a constant xs

may be necessary to account for the deformation of a

specimen during the data collection.

In order to obtain (8), we will discretize the z-variable

but keep



use interpolation to define RhlðtÞ for any t. To incorpo-
rate the linear interpolation, let us introduce the ‘‘hat’’

function, or the linear spline

bðtÞ ¼ 1 � jtj; �1 < t < 1;
0; otherwise;

�
ð14Þ

with its Fourier transform given by

b̂bðxÞ ¼ sinðpxÞ
px

� �2

:

We express the piecewise linear interpolation of the

discrete data using bðtÞ by defining

RhlðtÞ ¼
XM�1

k¼0

bðt � k þ xsÞrkl: ð15Þ

It is easily verifie95359ds by



4.2. Numerical algorithm

Our first goal in designing the FFS algorithm is to

match the results with those of the direct summation

algorithm. We do it for two reasons. First, since the

direct summation algorithm has been used for a long

time in TEM and significant experience has been accu-

mulated for interpretation of the images, we avoid the



Choosing Mf larger than M can be thought of as

oversampling the image. The oversampling factor is gi-

ven by the ratio Mf=M and it is desirable to make this
factor as close to one as possible. For typical data sets,

we have found that this oversampling factor ranges

between 1.5 and 2. In (24), the size of Mf depends on



ax
N tan hmax. We note that for physical reasons, large hmaxm

http://www.bio3d.colorado.edu/imod
http://www.bio3d.colorado.edu/imod


tilt angle, with the stretched data oversampled by a
factor of two to minimize the filtering effect of interpo-

lating twice. The result is that a line of stretched input

data can be added into a line of the tomographic slice by

stepping through the input line at a fixed interval and

with fixed interpolation factors. The advantages of FFS

would have been considerably higher than described

here without these improvements to the original code.

Further developments in the Tilt program and in the
FFS algorithm were spurred by the desire to correct for



Tilt now uses FFS to compute slices perpendicular to the



slice and ten slices, and the incremental time to com-
pute nine slices were used to compare FFS and direct

summation. Comparisons were done on SGI Octane

computers with R10000 and R12000 processors, on a

Sun Sparc Ultra-60, and on Intel-architecture com-

puters with Pentium 3, Pentium 4, Athlon Thunder-

bird, and Athlon MP processors. For the SGI and Sun

tests, programs were compiled with the native compil-

ers; the Intel-architecture tests were done both with
Fig. 8. Speed comparison. (Direct summation)/FFS execution time
programs compiled with GNU compilers and with
Intel compilers.

The results in Fig. 8, from SGI, Pentium 4, and

Athlon processors, illustrate the range of performance

benefits found with FFS for typical data sizes. These

graphs are not intended to demonstrate the order

OðNhM logMÞ þ OðMN logNÞ of the FFS algorithm

since they show the dependence on each parameter

separately with the other parameters fixed at typical
values. The main point of Fig. 8 is to show performance

gains for current typical sizes.

The strongest dependence is on the number of pro-

jections (Fig. 8A), where the speed benefit climbs 5-fold

with an increase from 20 to 320 projections. This initial

rise was most abrupt and pronounced with Athlon

processors (e.g., Fig. 8C) and it reflects predominantly a

slowing down of the direct summation per unit of
computation rather than a speedup of FFS. Our inter-

pretation is that the architecture of the Athlons is par-

ticularly favorable to the direct summation for small

data sizes, but at some point a limit in cache or pipeline

size is reached and the performance falls abruptly for

direct summation.

The FFS is actually slower than direct summation

for small data sets (Figs. 8A and B). To avoid using a
slower algorithm, the Tilt program switches to direct

summation when the width, thickness, or number of

projections falls below a specified limit for the given

computer architecture. Overall, the typical benefit

from FFS is about 1.5- to 2.5-fold, with greater

benefits available on some computers and with larger

data sets.
Acknowledgments

This research was supported in part by DARPA

Grants F49620-98-1-0491 and F30602-98-1-0154, Uni-

versity of Virginia Subcontract MDA-972-00-1-0016,

and NSF/ITR Grant ACI-0082982 (G.B), NIH/NCRR

Grant RR00592 and NIH Program Project Grant
P01GM61306 to J. Richard McIntosh (D.N.M), and

DARPA Grant F49620-98-1-0491, NSF/ITR Grant

ACI-0082982, and NIH Program Project Grant

P01GM61306 to J. Richard McIntosh (K.S.). The au-

thors thank the anonymous reviewers and Martin

Mohlenkamp for their useful and valuable comments.
Appendix A. Unequally spaced fast Fourier transform

(USFFT)

As is well known, the discrete Fourier transform

ûun ¼
XN�1

k¼0

uk e�2pik nN ; n ¼ 0; 1; . . . ;N � 1; ðA:1Þ



can be computed in OðN logNÞ operations using the fast
Fourier transform (FFT) (Cooley and Tukey, 1965).

Since our algorithm uses the sums (23) and (19), we

need a fast algorithm to compute the sums

ûun ¼
XM
k¼1

uk e�2pinkn; n ¼ �N
2
;�N

2
þ 1; . . . ;

N
2

� 1;

ðA:2Þ

and

ûuðnkÞ ¼
XN2�1

n¼�N
2

un e�2pinnk ; k ¼ 1; 2; . . . ;M ; ðA:3Þ

for a given real set of points fnkgM
k¼0, where jnkj < 1=2

for each k. We note that M may be different from N . The

requirement jnkj < 1=2 is not a constraint since by ap-


	A fast reconstruction algorithm for electron microscope tomography
	Introduction
	Preliminaries
	Formulation of the problem
	Inversion of the Radon transform
	Direct summation

	Inversion formula in the Fourier domain
	Implementation
	Discretization
	Numerical algorithm
	Oversampling
	Interpolation

	Results
	Incorporation of the FFS algorithm into IMOD
	Tests
	Accuracy
	Speed


	Acknowledgements
	Unequally spaced fast Fourier transform (USFFT)
	References


