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Abstract. We review the methods in [4] and [24] for constructing quadratures
for bandlimited exponentials and introduce a new algorithm for the same pur-

pose. As in [4], our approach also yields generalized Gaussian quadratures for
exponentials integrated against a non-sign-definite weight function. In addi-
tion, we compute quadrature weights via ℓ

2 and ℓ
∞ minimization and compare

the corresponding quadrature errors.

1. Introduction

We revisit the construction of quadratures for bandlimited exponentials
{
eibx

}
|b|≤c

integrated against a real-valued weight function w on the interval |x| ≤ 1. These
functions are not necessarily periodic in [−1, 1]. Unlike the classical Gaussian
quadratures for polynomials which integrate exactly a subspace of polynomials up
to a fixed degree, Gaussian type quadratures for exponentials use a finite set of
nodes in order to integrate the infinite set of functions

{
eibx

}
|b|≤c

. While it is not

possible to construct exact quadratures in this case, those introduced in [4] inte-
grate with (user-selected) accuracy ǫ all exponentials with |b| ≤ c. We note that,
for a given bandlimit c and accuracy ǫ, quadratures of this type are not unique.

For a given accuracy ǫ, bandlimit c, and weight function w, the Gaussian-type
quadratures in [4] are designed to integrate functions in the linear s
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of weights further. A Newton-type optimization (using ℓ2 norm) is shown to gain
an extra 1 − 2 digits in the accuracy of the quadratures.

A drawback of this approach is that it is not clear how to apply it for a general
weight function since no differential operator is available (see [14]). On the other
hand, given that a differential operator is available for the weight function w = 1,
positions of nodes may be found rapidly in O(M) operations using the algorithm
in [10]. This fact that the PSWFs satisfy the second order differential equation in
(2.2) implies that their zeros may be found without ever explicitly computing the
functions themselves. We note that the DPSWFs (see previous section) also satisfy
a second order differential equation and, hence, the algorithm in [10] is applicable
in that case as well.

3. Computing quadrature nodes as eigenvalues

3.1. Classical quadratures for polynomials. Let us illustrate finding nodes as
eigenvalues of a matrix by constructing the classical Gaussian quadrature with M

nodes {xm}M
m=1. Let us consider a basis {φl(x)}M−1

l=0 in the subspace of real-valued
polynomials of degree up to M − 1 equipped with the inner product

〈p, q〉 =

∫ 1

−1

p(x)q(x)w(x)dx.

We form the square matrix A ∈ RM×M of entries

All′ =

∫ 1

−1

φl(x)φl′ (x)w(x)dx =

M∑

m=1

φl(xm)wmφl′ (xm),

where xm are the desired quadrature nodes and wm the corresponding quadrature
weights. Since the product of two polynomials in this subspace has degree of at
most 2M −
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quadratures for an arbitrary user-selected accuracy ǫ. These quadratures integrate
exponentials of bandlimit c against a real-valued weight function w(x), so that

(3.1)

∣∣∣∣∣

∫ 1

−1

eibxw (x) dx−
M∑

m=1

eibxmwm

∣∣∣∣∣ < ǫ, |b| ≤ c,

where xm ∈ [−1, 1] and wm ∈ R \ {0}.
To solve this problem, we consider

(3.2) G(b, b′) =

∫ 1

−1

ei b
2

xe−i b′

2
xw(x)dx, |b| , |b′| ≤ c,

which we discretize as

(3.3)

∫ 1

−1

ei c
2

n
N

xe−i c
2

n′

N
x w(x)dx, n, n′ = −N, . . . , N,

where N > M by an (oversampling) factor. However, it is more convenient to
consider instead the Hermitian (N + 1) × (N + 1) matrix

(3.4) Gnn′ =

∫ 1

−1

eic n
N

xe−ic n′

N
x w(x)dx, n, n′ = 0, . . . , N,

which oversamples the interval [−c, c] in the same fashion with an appropriate
N . Note that if w ≥ 0, G is a Gram matrix of inner products. As discussed in
Section 2.1, the resulting quadratures also depend weakly on the choice of N .

Let us seek {xm}M
m=1 and {wm}M

m=1, with M < N , so that

(3.5) |Gnn′ − Qnn′ | < ǫ, n, n′ = 0, . . . , N,

where the quadrature matrix Q has entries

(3.6) Qnn′ =
M∑

m=1

eicxm
n
N wme

−icxm
n′

N , n, n′ = 0, . . . , N.

First, we show that it is possible to obtain the quadrature nodes by finding
eigenvalues of an appropriate matrix. We consider two submatrices of Q,
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(2) Take the SVD of G, G = UΣV∗, and select the index M corresponding to
the singular value σM such that σM/σ0 is close to the desired accuracy ǫ.

(3) Truncate the matrix U (such that it contains the singular vectors corre-

sponding to the singular values σ0, . . . , σM−1) and form the matrices ŨM

and ÛM from equation (3.12).

(4) Using the pseudo-inverse, form the matrix CM = Ũ
†
M ÛM and find its

eigenvalues,
{
eicxm/N

}M

m=1
, from which we extract the nodes xm, m =

1, . . . ,M .

Remark 1. Similar to the algorithms for finding quadratures in [4] and [24], if we
compute high accuracy quadratures (e.g., ǫ < 10−12), we need to use extended
precision arithmetic in our computations. Once the quadrature nodes and weights
are obtained, no extra precision is needed for their use.

Remark 2. Algorithm 1 requires O
(
M3

)
operations and is applicable to general

weight functions (see examples below).

Remark 3. The explicit introduction of inner products (if applied to the case of
decaying exponentials) provides an interpretation of the so-called HSVD [19] or the
matrix-pencil method [15, 16, 17] algorithms (that are essentially the same). In
our view, our approach simplifies the understanding of these algorithms originally
introduced in electrical engineering literature as a sequence of steps similar to those
in Algorithm 1.

4. Calculating quadrature weights

We calculate quadrature weights using two different approaches: standard least
squares and ℓ∞ residual minimization. The most straightforward approach is to
use least squares. However, we may achieve a better maximum error if we use ℓ∞

residual minimization. This approach leads us to set up the problem as a second
order cone program (since our matrices are complex), and then apply an appropriate
solver (see Section 8.2).

4.1. Finding weights via least squares. To find the weights wm, m = 1, . . . ,M
that satisfy (3.1), we solve a rectangular Vandermonde system using least squares.
The Vandermonde matrix V ∈ C(2N+1)×M is defined as Vnm = eicxmn/N , where
xm, m = 1 . . .M , are the quadrature nodes, c is the bandlimit parameter and n =

−N, . . . , N . We solve the overdetermined system Vw = u, where w = {wm}M
m=1

is the vector of weights and u = {un}N
n=−N is the vector of trigonometric moments

un = u
( n
N

)
=

∫ 1

−1

eicx n
N w (x) dx.

The performance of our quadrature nodes using least squares weights is illustrated
in Table 2 and Figure 6.3(a).

This approach to finding weights is related to the method used in [4] since we also
solve a Vandermonde system. However, in [4] the Vandermonde system size may
vary betweenM×M and (N + 1)×(N + 1). The different sizes of the Vandermonde
system are due to the knowledge, or lack thereof, of the general location of the
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nodes. If the nodes are known to belong to a particular subset of the unit circle,
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5. Examples

5.1. An example of linear array antenna. Let us find quadrature nodes for
the integral

(5.1) u(c) (B, l, cos θ) =
1

2

∫ 1

−1

I0

(
πB

√
1 −

(x
l

)2
)
eicx cos(θ)dx,

where c is the bandlimit and I0 is the modified Bessel function of order zero. This
integral arises in antenna design and, for parameters l = 1 and B = 1, a quadrature
for (5.1) is computed in [7, Eq. 6.7] by a different approach. However, our approach
is simpler and yields similar results. Given the weight function

(5.2) w (x) = I0

(
π
√

1 − x2
)
,

we obtain its trigonometric moments as

(5.3) u(c)n =
1

2

∫ 1

−1

eicxn/Nw (x) dx = sinc

(√
(c
n

N
)2 − π2

)
, n = −N, . . . N,

corresponding (up to a factor) to the samples of the radiation pattern. Identity
(5.3) may be obtained extending formula 6.616.5 in [12, p. 698]. We also note that
the weight function (5.2) is a scaled version of the so-called Kaiser window (see e.g.
[18]).

We form

Gnn′ = u
(c)
n−n′ , n, n

′ = 0, . . .N,

with N = 252 and c = 10π, and use Algorithm 1 in Section 3.3. We truncate the
SVD of the matrix G at the (normalized) singular value σ22, σ22/σ0 ≈ 1.2 · 10−15,
yielding 22 quadrature nodes. Using the ℓ∞ residual minimization (see Section 4.2),
we compute the weights resulting in a quadrature with maximum absolute error
ǫ = 1.21 · 10−14. We verify the accuracy of this quadrature numerically and il-
lustrate the result in Figure 5.1. This quadrature should be compared with that
corresponding to the bandlimit 20π in [7, Table 6.3] since we integrate on [−1, 1]
instead of [−1/2, 1/2] as in [7].

5.2. Non-sign-definite example. We demonstrate that our method yields quadra-
tures for weight functions w that are not sign-definite. For the weight function

(5.4) w(x) = (x− 1/10) · e−(3πx/5−1/5)2 + 1/(5e),

we calculate the nodes and weights for the bandlimit c = 5π, choosing N = 127 and
the singular value σ14/σ0 = 5.0 ·10−14. Figure 5.2(a) illustrates the weight function
w(x), x ∈ [−1, 1], and Figure 5.2(b) shows that the weights of the quadrature follow
the shape of the weight function w(x). The error of the quadrature with 14 nodes
and weights is illustrated in Figure 5.2(c), where the maximum error is 6.68 ·10−14.

We note that the approach in [4] also allows us to obtain quadratures for weight
functions w(x) that are not sign-definite as is shown in [2].
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Quadrature nodes and weights for c = 50
Nodes ℓ2 min weights ℓ∞ min weights

0.05098496373726 1.0194136874164 · 10−1 1.0194136790749 · 10−1
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Note that our approach is more general since it may be applied to any basis

{pn (x)}N
n=1 , even if it is not orthogonal (no 3-term recurrence is available); it

also generalizes to other sets of functions or non-positive weights.

8.2. Formulation of ℓ∞ residual minimization as a second-order cone pro-

gram. We review the primal-dual interior-point method of [20], the algorithm we
implemented in extended precision to compare with the results obtain
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8.2.2. Primal-dual interior-point method. The primal-dual interior-point algorithm
solves (8.3) by minimizing the difference between the primary and the dual objective
functions, known as the duality gap,

η (x, z,w) = f tx +
N∑

i=1

(
bt

izi + diwi

)
.

This gap is non-negative for feasible x, z,w. Considering strictly feasible primal
and dual problems (i.e., the inequalities in (8.3) and (8.4) are replaced by strict
inequalities), we know that there exists solutions where the duality gap η (x, z,w) =
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Finally, we state the algorithm. Given strictly feasible initial points (x, z,w), a
tolerance ǫ > 0, and the parameter ν ≥ 1, we

(1) Solve equation (8.5) for the primal and dual search directions.
(2) Perform a plane search to find the (p, q) that minimize ϕ (x + pδx, z + qδz, w + qδw).
(3) Update x = x+pδx, z = z+qδz, and w = w+qδw as long as η (x, z,w) > ǫ.

We note that as η decreases in size the system of equations (8.5) becomes ill con-
ditioned, which results in indeterminate search directions.
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