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Abstract. We use optimal rational approximations of projection data col-
lected in X-ray tomography to improve image resolution. Under the assump-
tion that the object of interest is described by functions with jump discontinu-
ities, for each projection we construct its rational approximation with a small
(near optimal) number of terms for a given accuracy threshold. This allows us
to augment the measured data, i.e., double the number of available samples in
each projection or, equivalently, extend (double) the domain of their Fourier
transform. We also develop a new, fast, polar coordinate Fourier domain algo-
rithm which uses our nonlinear approximation of projection data in a natural
way.

Using augmented projections of the Shepp-Logan phantom, we provide
a comparison between the new algorithm and the standard Filtered Back-
Projection (FBP) algorithm. We demonstrate that the reconstructed image
has improved resolution without additional artifacts near sharp transitions in
the image.

1. Introduction

As perceptively noted in [29], despite the development of many new algorithms
for the inversion of the Radon transform, the quality of image reconstruction (in e.g.,
X-ray tomography) has not improved noticeably when compared with the output
of the traditional Filtered Back-Projection (FBP) algorithm (see, for example [28]).
This lack of improvement in image quality may be traced to the fact that the signal
model for collected data is subject to the Nyquist sampling criterion. Since we are
typically interested in reconstructing piece-wise continuous objects, the collected
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a (periodic) signal allows us, in principle, to recover its entire Fourier series from
a small number of samples. In practice, even though the presence of noise limits
such a recovery, a rational model still outperforms models based on the Nyquist
sampling criterion. For objects with a limited number of isolated singularities,
optimal rational approximations of projection data yield a significant improvement
in resolution without introducing artifacts near singularities.
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M∑

m=1

wm

1− e−ηmN
e−ηmj +

M∑

m=1

wm

1− e−η



RATIONAL APPROXIMATIONS FOR TOMOGRAPHIC RECONSTRUCTIONS 5

and the operator K (applied to each projection separately)

(Kf) (s) =
1

2

ˆ

R

|ρ| f̂ (ρ) e2πiρsdρ.

Since multiplication by |ρ| is an unbounded operator, in practice it is replaced by
its band-limited approximation,

(Kf) (s) =
1

2

ˆ

R

|ρ|W (ρ) f̂ (ρ) e2πiρsdρ =

ˆ

R

k(s − t)f(t)dt,

where

k(t) =
1

2

ˆ

R

|ρ|W (ρ) e−2πiρtdρ.

In FBP algorithms a typical choice for |ρ|W (ρ) and, therefore k(t), is the Shepp-
Logan filter (see e.g., [28] for details). Since any filter modifies the measured data
within its bandlimit, our goal is to first extend the bandlimit of the data so that
when we apply the filter (see Algorithm 5.1), its impact on the measured data
(within its original bandlimit) is reduced.
We also have from (3.1) the Fourier slice theorem,

û (ρν) =

ˆ

R2

u(x)e−2πiρν·xdx =

ˆ

R

(Ru) (s,ν) e−2πiρsds,

which we use to build a fast and accurate Fourier domain reconstruction algorithm
as an alternative to FBP. In this paper we only examine the so-called parallel
beam tomography, i.e. the most simple geometry for the tomographic reconstruction
problem. However, the methods used in this paper are applicable to other, more
complex geometries, such as fan beam tomography.

3.2. Quadratures for the disk. In order to have an accurate and fast reconstruc-ˆf(
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(3.2)

∣∣∣∣∣f̂ (cρ, θ)−
L∑

l=−L

ql (cρ) eiθl

∣∣∣∣∣ ≤ ǫ, 0 ≤ ρ ≤ 1

where

(3.3) L ≥ max
{
7, e

√
2c, log2

(
2‖f‖∞ǫ−1

)}
.

For the proof see Appendix 8. A similar observation was made in [27, 28] in the
context of sampling for tomographic reconstruction algorithms.
Since the function f is real and (ρ, θ + π) and (−ρ, θ
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of the disk-to-disk mapping since, inter alia, for the square-to-disk case no ordi-
nary differential equation is available to compute the eigenfunctions of the integral
operator.
We believe that in the tomography setup, the eigenfunctions of the square-to-disk

Slepian operator provide a linear space that naturally describes both the measured
data and the reconstructed image. The well-localized nature of tomographic pro-
jections allow us to approximate them using only the eigenfunctions corresponding
to eigenvalues close to 1 since these eigenfunctions are well-localized in the spatial
box (slightly away from the boundary) while their Fourier transforms are supported
in the disk (see [3, Sections 2.2-2.3] for details). In practice, this property leads
to quadratures with controlled accuracy for functions band-limited within a disk
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• The exponents ηm in equation (3.6) are defined by the roots γm via ηm =



RATIONAL APPROXIMATIONS FOR TOMOGRAPHIC RECONSTRUCTIONS 10

Fourier data, we discard them at the expense of introducing an additional error.
The following approach aims to isolate such errors to the vicinity of singularities,
which are responsible for the slow decay of the Fourier data and the mismatch
between DFT and Fourier series coefficients.
The proximity of a node to the unit circle controls the frequency contribution

of that node while the position of the corresponding pole (of the rational approxi-
mation) is directly associated with the location of a singularity [6]. Therefore, the
impact of removing nodes just outside the unit disk should be localized to neighbor-
hoods of singularities. However, when we remove nodes from just outside the unit
circle and use the ℓ2 norm to calculate the weights via (3.9), the error spreads out
to a large neighborhood of the singularity as illustrated in Figures 4.1 (a)
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Figure 4.1. Rational approximation of a projection in the vicinity
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(5.3) W (ρ) = sin2
(π

4
ρ − π

2

)
, ρ ∈ [0, 2] .

In comparison, within the FBP algorithm, the bandlimit c (corresponding to the
measured data) is enforced by e.g., the Shepp-Logan filter. Since we first extend to
the larger bandlimit cnew, and then apply the filter (5.3), the impact of the filter
on the measured data of bandlimit c is significantly reduced, since the filter mostly
modifies the extended part of ĝext.
Therefore, we obtain

(5.4) ĝbl (ρ, k) = ĝext (ρ, k)W (ρ),

where the window is specified in (5.3). Since the image is a real valued function,
we define

(5.5) ĝbl (−ρ, k) = ĝbl (ρ, k)

for each projection, k = 0, . . . , Nθ − 1 and then sample ĝbl (ρ, k) on the diameter
using quadrature nodes 2ρν , ν = −Nρ, . . . , Nρ described in Section (3.2) (we may
also choose a quadrature with an even number of nodes on the diameters).
The final step of the algorithm uses the USFFT [11, 2, 26] with input values

ĝbl(2ρν , k), ν = −Nρ, . . . , N
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6. Numerical examples

We now analyze the impact on image resolution of the rational approximation of
projections and compare the new PQI algorithm with the FBP algorithm. Follow-
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observe that the PQI algorithm achieves a significantly improved resolution without
introducing additional artifacts.
This also allows us to compare the output of our algorithm with that of the FBP

algorithm on augmented projections. We see no significant difference in the recon-
structions Figure 6.3 (a) and Figure 6.2 (a). A comparison of the reconstruction
errors, Figure 6.3 (b) and Figure 6.2 (b) also shows no significant difference.

6.2. Zooming on details. In order to demonstrate the increased resolution, we
zoom in on two areas of the reconstruction. The locations of these areas are shown
in Figure 6.3 (a). In Figures 6.4 and 6.5 we compare images near the center of the
phantom using the FBP and the PQI algorithms, respectively. Figure 6.4 compares
a 32 × 32 pixel patch (obtained from the original data set of 512 projections with
512 samples each and extracted from 512× 512 pixel reconstruction via FBP) and
a 64× 64 pixel patch extracted from 1024× 1024 reconstruction using the FBP on
augmented data. Similarly, in Figure 6.5, we compare the same 32× 32 pixel patch
with a 64×64 patch extracted from 1024×1024 reconstructed image using the PQI
algorithm. A similar comparison is shown in Figures 6.6 and 6.7 but zooming into
a different section of the Shepp-Logan phantom.
We observe that higher resolution is not accompanied by any additional artifacts

and results in visibly sharper images.

6.3. Noisy examples. To test the stability of approximation by rational functions
in the presence of noise, we add (to each projection) Gaussian white noise with zero
mean and standard deviation of 2.5 ∗ 10−4. The noise level is of the same order
as the smallest features captured by the projections. In all experiments involving
noise we used the threshold σM /σ�
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(a)
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(a)

(b)

Figure 6.2. A 1024 × 1024 reconstructed image of the Shepp-
Logan phantom via the FBP algorithm using projections (with
twice as many samples) generated by near optimal rational ap-
proximation (a) and the corresponding error (b). Gray scales are
the same as in Figure 6.1 which should be used for comparison.
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(a)

(b)

Figure 6.3. A 1024×1024 reconstructed image via the PQI algo-
rithm of Section 5 (a) and the corresponding error (b). The gray
scales are the same as in Figures 6.1 and 6.2, which should be used
for comparison. The two boxes in (a) outline areas of the recon-
structed image on which we zoom to examine the reconstruction
at a pixel level.
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(a)

(b)

Figure 6.8. Comparison of errors of 1024× 1024 reconstructions
in Figure 6.2 (via the standard FBP applied to noiseless data) (a)
and the same data with added Gaussian noise (b). We observe
that the Gaussian noise creates a speckle component in the error.
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