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The piston shock problem is a classical result of shock wave theory. In this work, the analogous
dispersive shock wave (DSW) problem for a fluid described by the nonlinear Schrödinger equation is
analyzed. Asymptotic solutions are calculated for a piston (step potential) moving with uniform speed into
a dispersive fluid at rest. In contrast to the classical case, there is a bifurcation of shock behavior where, for
large enough piston velocities, the DSW develops a periodic wave train in its wake with vacuum points
and a maximum density that remains fixed as the piston velocity is increased further. These results have
application to Bose-Einstein condensates and nonlinear optics.20.7(wher9 Tliodiins6C[9(20Tlio(9303)]TJz4largC1.4nsi).7(d8ghe(9303)]T)-32)-268.403/PhysRe4], revealing appealing similarities but also im-
portant differences. Motivated by the classical VSW piston
problem, we consider the generation of a DSW by a piston
moving into a dispersive fluid at rest.

The piston shock problem is one of the canonical prob-
lems in the theory of VSWs. A uniform gas is held at rest in
a long, cylindrical chamber with a piston at one end. When
the piston is impulsively moved into the gas with constant
speed, a region of higher density builds between the piston
and a shock front that propagates ahead of it. An elegant
asymptotic (zero dissipation limit) solution to this problem
is well known and relates the shock speed to the speed of
the piston and the initial density of the gas (see, e.g., [5]
and the discussion below).

In this work, we consider the analogous problem of a
‘‘piston’’ moving with constant speed into a steady, dis-
persive fluid: e.g., a BEC or nonlinear optics. The piston in
this case is a step potential that moves with uniform speed.
This potential could be realized in a BEC with a repulsive
dipole beam and in nonlinear optics with a local change in
the index of refraction. One expects, in analogy with the
classical, viscous case, the generation of a dispersive shock
wave. As we will show, this is indeed the case. However, in
contrast to the viscous case, there are two types of asymp-
totic behavior, depending on the piston speed. For smaller
piston velocities, a region of larger density builds between
the piston and a DSW. For large enough piston velocities, a
locally periodic wave train is generated between the piston
and the DSW that has no VSW correlate. This wave train
oscillates between the vacuum state (zero density) and a

maximum density that is independent of further increase in
the piston velocity.

DSWs can be studied using the Whitham averaging
method [6]. This technique has been successfully applied
to many DSW problems including collisionless shocks in
plasma [7], undular bores in hydrodynamics [8], Bose-
Einstein condensates [2,9,10], fiber optics [11], the gen-
eration of ultrashort lasers [12], and DSW interactions [4].
A related class of moving boundary shock problems was
studied as an asymptotic reduction of two-dimensional,
steady, supersonic flow of a dispersive fluid around an
obstacle [13].

We consider the one-dimensional (1D) nonlinear
Schrödinger equation (NLS) with a potential [also known
as the Gross-Pitaevskii (GP) equation]

 i"�t � �
"2

2
�xx � V0�x; t��� j�j

2�; 0 < "� 1:

(1)

This equation models the mean field of a quasi-1D BEC
[14] and the slowly varying envelope of the electromag-
netic field propagating through a Kerr medium [15]. The
small parameter " is inversely proportional to the number
of atoms in the BEC [2] or, after rescaling, inversely
proportional to the maximum initial intensity of the elec-
tromagnetic field. For all calculations in this work, we
assume " � 0:015, a typical experimental value for BEC
[2]. The piston problem is modeled with a temporally and
spatially varying step potential V0�x; t� � VmaxH�vpt�
x�, where H�y� is the Heaviside step function. The piston
strength and speed are Vmax and vp, respectively. The
initial conditions are ��x; 0� !

������
�R
p

as x! 1, ��x; 0� !
0 as x! �1. Because the strength of the piston is large,
Vmax � �R, the density or intensity rapidly decays to zero
near the origin. We assume that the wave function � is in
the ‘‘ground state’’ of the step potential VmaxH��x� when
t � 0. For all calculations in this work, �R � 0:133.
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It is useful to view Eq. (1) in its hydrodynamic form by
making the transformation � �
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0; t�dx0

and inserting this expression into the first two local con-
servation equations for the GP equation,
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(2)

where � is the dispersive fluid ‘‘density’’ and u is the
dispersive fluid ‘‘velocity’’. These equations are similar
to the Navier-Stokes and shallow water equations of fluid
dynamics except that the viscous terms have been replaced



self-similar, rarefaction solution for r3 is found giving rise
to a pure DSW propagating ahead of the piston with
trailing and leading edge speeds, respectively [2,9]:

 v�s �
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(7)

Figure 1, left, depicts the asymptotic piston DSW solu-
tion for a small piston velocity. The minimum values of the
density and velocity occur at the trailing edge of the DSW
and are [2,9]:
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The maximum values occur between the piston and the
DSW: �max � �L � �vp=2�

������
�R
p
�2, umax � uL � vp.



the TW trailing the DSW, the velocity in this region, from
Eq. (5), is u � V � vp everywhere (except at the vacuum
points, where the velocity is undefined). The wavelength of
the TW is l � 2"K�4�R=v2

p�=vp. The DSW propagates
with trailing edge speed (also the propagation speed of
the rightmost vacuum point where � changes sign) v�s �

vp � �vp � 3
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p
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p�
� 1
�1, and leading

edge speed v�s , the same as that given in Eq. (7). The
number of vacuum points increases linearly with time:

Nvac�t� � d
v�s �vp

l te � d �v
�
s �vp�vp

2"K�4�R=v
2
p�
te.

We perform direct numerical simulations of Eq. (1) to
verify the assumptions we have made, such as the bound-
ary conditions (3) and (6), the vacuum and TW velocity
conditions (9) and (10), and the trailing edge DSW speed
v�s of Eq. (7). All of our assumptions agree well with the
numerical simulations shown in Figs. 2 and 3.

Numerically calculated piston DSWs for both moderate
(vp �

������
�R
p

) and large (vp � 2:5
������
�R
p

) piston velocities are
shown in Fig. 2. For the slower piston velocity in Fig. 2,
left, the solution is similar to the asymptotic result in Fig. 1,
left. The piston DSW corresponding to the large piston
velocity in Fig. 2, right, is very similar to the asymptotic
result in Fig. 1, right. The vacuum condition in Eq. (9)
predicts u � vp everywhere in the trailing wave region,

except at vacuum points, where it is undefined. This is
reflected in the numerical calculation as very large spikes
in the velocity when the density approaches zero.

In conclusion, we have solved the dispersive shock wave
piston problem for arbitrary positive piston velocities in
systems described by the nonlinear Schrödinger equation,
demonstrating the existence of a bifurcation in shock be-


