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Statistical properties of avalanches in networks
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We characterize the distributions of size and duration of avalanches propagating in complex networks. By
an avalanche we mean the sequence of events initiated by the externally stimulated excitation of a network
node, which may, with some probability, then stimulate subsequent excitations of the nodes to which it is
connected, resulting in a cascade of excitations. This type of process is relevant to a wide variety of situations,
including neuroscience, cascading failures on electrical power grids, and epidemiology. We find that the statistics

http://dx.doi.org/10.1103/PhysRevE.85.066131


LARREMORE, CARPENTER, OTT, AND RESTREPO PHYSICAL REVIEW E 85, 066131 (2012)

that our analysis allows us to identify how changes in network
structure affect the parameters of the statistical distributions
of avalanche size and duration. Moreover, our theory allows
us to obtain the statistics of avalanches starting at particular
network nodes.

This paper is organized as follows. In Sec. II we describe
our model for avalanche propagation in networks. In Secs. III
and IV we analyze the statistics of avalanche duration and
size. In Sec. V we validate our analysis through numerical
experiments. Section VI presents further discussion and
conclusions.

II. FORMULATION

To model the propagation of avalanches in a network,
we consider a network of N nodes labeled m = 1,2, . . . ,N .
Each node m has a state x̃
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By definition (see also Appendix A), cn(t) is a bounded,
increasing function of t and therefore it must converge to
a value limt→∞ cn(t) = bn � 1, which can be interpreted as
the probability that an avalanche starting at node n has finite
duration. Our analysis will be based on whether or not this
limit is strictly less than one or equal to one. As shown
in Appendix A, this is determined by the Perron-Frobenius
eigenvalue of A, λ: If λ � 1, then limt→∞ c
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the convergence of fn(t) to 0 is slower than exponential, we
look for a solution f
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E[e−sznmxm |Wnm] = φm(s),

E[e−sznmxm |Znm] = 1,

substitution into Eq. (28) gives

E[e−sznmxm |Znm ∪ Wnm] = (1 − Anm) + bmAnmφm(s)

(1 − Anm) + bmAnm

.

(29)

Inserting this into Eq. (27), we obtain one of our main results,

φn(s) = e−s

N∏
m=1

(1 − Anm) + bmAnmφm(s)

(1 − Anm) + bmAnm

. (30)

Defining gn(s) = φn(s) − 1 and the matrix H with entries

Hnm = bm (1= →
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V. NUMERICAL EXPERIMENTS

In this section we test the theoretical predictions of
the preceding sections by directly simulating the process
described in Sec. II on computer-generated networks. We first
describe the processes used to construct networks and simulate
avalanches.

Networks were constructed in two steps. First, binary
networks (with adjacency matrix entries Ânm ∈ {0,1}) were
constructed via an implementation of the configuration model
[30], using N = 105 nodes, with nodal degrees drawn from a
power-law distribution with exponent 3.5, i.e., the probability
that a node has degree k is proportional to k−3.5. Second, each
nonzero entry Ânm was given a weight, drawn from a uniform
distribution U[0,1]. We then calculated the Perron-Frobenius
eigenvalue of this weighted matrix, λ̂, and multiplied the
matrix by λ/λ̂, resulting in a matrix A with the desired
eigenvalue λ. We simulated avalanches for networks with λ

between 0.5 and 1.5, sampling more finely for values close
to 1.

Each simulated avalanche was created by first exciting a
single network node, chosen uniformly at random, and then
calculating the size and duration of the resulting avalanche
as defined in Eqs. (1) and (2). If the resulting avalanche
lasted for more than 106 time steps, we considered it as
having infinite duration and infinite size. In all cases the initial
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start at the nodes that tend to generate the largest avalanches.
As shown in Fig. 7, the naive prediction that the nodes with
the largest out-degree generate the largest avalanches is not
necessarily true when the networks have nontrivial structure,
such as degree correlations.

In developing our theory we made some assumptions that
we now discuss. First, we assumed that the network was locally
treelike. This allowed us to treat avalanches propagating to
the neighbors of a given node as independent of each other.
While this is a good approximation for the networks we used,
it is certainly not true in general. In particular, avalanches
propagating separately from a given node might excite the
same node as they grow. The result is that the number of nodes
that the avalanches excite in the simulation may be less than
what the theory would predict. In running our simulations
we addressed this issue in two ways. First, we kept track
of the number of times two branches of the same avalanche
simultaneously excited the same node n, finding it to be an
increasing function of avalanche size and Perron-Frobenius
eigenvalue, yet still negligible when compared to the total
number of excitations. In addition, each time such an event
occurred, we separately generated an avalanche starting from
the doubly excited node n and corrected both the size and
duration of the original avalanche by incorporating these
additional avalanches. We found that doing this had no
appreciable effect on the measured distributions and so all
figures shown in this paper are produced from simulation
data without the additional compensating avalanches included.
This and the fact that the numerical simulations are described
well by the theory suggest that the interaction of avalanches
propagating to different neighbor nodes can be safely neglected
in the networks studied. The performance of our theory in
networks that are not locally treelike, such as networks with a
high degree of clustering, is left for future research. Another
approximation we used is that the Perron-Frobenius eigenvalue
λ is well separated from the rest of the spectrum. This is a good
approximation in networks without well-defined communities,
but can break down in networks with strong community
structure [27].

Finally, we note that our results show that the experimental
signatures of criticality in neural systems (characterized by
a power-law distribution of avalanche size and duration with
exponents −3/2 and −2, respectively [4,5,11,12]) are robust
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APPENDIX B: λ > 1 ⇒ λD < 1

In this appendix we argue that the Perron-Frobenius
eigenvalue of the similar matrices H and D is less than one
when the Perron-Frobenius eigenvalue of A is greater than one:
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