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The largest eigenvalue of the adjacency matrix of a network plays an important role in several network
processes �e.g., synchronization of oscillators, percolation on directed networks, and linear stability of equi-
libria of network coupled systems�. In this paper we develop approximations to the largest eigenvalue of
adjacency matrices and discuss the relationships between these approximations. Numerical experiments on
simulated networks are used to test our results.
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I. INTRODUCTION

In recent years, there has been much interest in the study
of the structure of networks arising from real world systems
�1�. Another concern has been dynamical processes taking
place on networks, and the impact of network structure on
such dynamics. The largest eigenvalue of the network adja-
cency matrix has emerged as a key quantity important for the
study of a variety of different dynamical network processes.
For example, large ensembles of heterogeneous dynamical
systems can undergo a transition to synchronization as the
coupling strength k between the systems is increased. For a
large class of networks and dynamical systems, the value of
k at which the transition to synchronization takes place is
given by kc=k0 /�, where k0 depends only on the dynamics
of the uncoupled dynamical systems and � is the largest
eigenvalue of the network adjacency matrix �2�. The largest
eigenvalue � is also important in percolation on directed net-
works �3�, linear stability of the fixed points of systems of
network-coupled ordinary differential equations �4�, and sev-
eral other examples in physics and chemistry �5,6�. In this
paper we study methods of obtaining approximations to � for
the case of large complex networks.

We consider a network as a directed graph with N nodes,
and we associate to it an N�N adjacency matrix whose el-
ements Aij are one if there is a directed edge from i to j and
zero otherwise. �We require no self-edges Aii=0 but allow
bidirectional edges Aij=Aji=1.� We denote the largest eigen-
value of A by � �assuming that the graph is connected, the
eigenvalue of A with the largest magnitude is unique, real,
and positive by the Perron-Frobenius theorem �6��. Further-
more, we note that it is often the case that the largest eigen-
value is well separated from the second largest eigenvalue
�see Fig. 1�.

The properties of � have been studied in the context of
small or regular graphs �5� and in classical Erdös-Renyi ran-
dom graphs �7�. However, the structure of real world net-
works is usually more complex, as demonstrated by the fact

that the degree distribution in a large number of examples
has been found to be highly heterogeneous �often following a
power law �8��, where the out-degree and in-degree of a node
i are defined by di
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many network realizations�. Specifically, they found that

� 	
�̂ �̂ � d̄max ln N ,

�d̄max
�d̄max � �̂ ln2 N .

� �2�

Some previous results for dynamical processes in networks

have been stated in terms of the quantity �̂, for example, the
synchronization threshold in the mean-field theory of
coupled oscillators in networks �2,16,17� and the network
percolation and epidemic spreading thresholds �18,19�.

Real world networks often have some amount of edge
degree correlations �20�, i.e., a node of a given degree is
more likely to be connected to nodes with certain other de-
grees than would be expected on the basis of chance. Net-
works in which high degree nodes connect preferentially to
high �low� degree nodes, and vice versa, are called assorta-
tive �disassortative�. Such correlations can affect dynamical
processes on networks, as has been demonstrated, for ex-
ample, in epidemic spreading models and percolation
�21–23�.

We also emphasize that the in- and out-degrees at a node
can have different distributions �i.e., Pin�din��Pout�dout��, as
has been noted for some corporate information and genetic
networks �24,25�, and that there are potential correlations
between the in and out degrees at the same node, which can
also significantly affect the largest eigenvalue. We call these
correlations node degree correlations.

The rest of this paper is organized as follows. Section II
reviews the characterization of degree correlations. Section
III develops the theory of the maximum eigenvalue � for the
case of networks that satisfy a certain Markovian property.
Some of the considerations of Sec. III are similar to theory in
previous papers, where, however, those previous consider-



and out edges does not necessarily make a subnetwork with
large eigenvalue. Regarding the latter point, consider Fig.
2�b� as compared to Fig. 2�a�. This directed network has all
its eigenvalues zero, because no pair of in and out edges
connects the same two nodes.

B. Edge degree correlations

For our subsequent analysis it is useful to introduce an
edge degree correlation coefficient � characterizing the cor-
relation between the in-degree at node i and the out-degree at
node j, where a directed edge goes from i to j,

� � �di
indj

out�e/�di
in�e�dj

out�e, �9�

with �Qij�e denoting an average over edges

�Qij�e � �
i,j

AijQij/�
i,j

Aij . �10�

Using Eq. ��0i b T m 
 h l Þ d 6 . J 
 / s 9 d b T m 4 3  1  T f 
 0 . 3 3 � � 0 i
i n �

e /�i,jA

ij dii j /�i,jA e/� j di in d



�C	z = C	z, �19 ,
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network with power law degree distribution generated as de-
scribed above with N=25 000, �d�=100, and exponent �
=2.5. In Fig. 4�b� we plot the same quantities for a directed
network with N=10 000, �d�=20, and exponent �=2.5.
When constructing the directed network, we chose the target

d̂k
in independently from d̂k

out so that there are no node degree
correlations ��=1�. In these plots there is no discernible dif-
ference between the approximation �C and the actual values
of �. We observe that the largest eigenvalue depends strongly
on the correlation coefficient: in the undirected case, it in-
creases more than three times as � varies from 0.4 to 1.7.
Also, we see that in these examples the linear approximation
works for ��−1 � �0.2, but fails for larger values of ��−1 � .
In the undirected case, � is larger than the linear approxima-
tion, which follows from Eq. �6� if we set qi=di. We also
note that in the undirected network there are strong node

degree correlations ��= �̂ / �d��2.5�, but this does not affect
the quality of the approximations.

In Fig. 5 we show the eigenvector ui for the network of

Fig. 4�b� at �	0.9 plotted against the corresponding ap-
proximation �uC�i, Eq. �20�, using an arbitrary scale. Up to a
normalization factor, there is good agreement between the
true value and its Markov estimate ��uC�i
ui�.

V. CONCLUSION

In this paper we have considered several approximations
to the largest eigenvalue of the adjacency matrix of large,
directed networks. The mean-field result �3� appears to apply
well to networks whose neighboring nodes are uncorrelated
in their degrees. The linear approximation �34� applies for
sufficiently small correlation, while the Markov model �18�
applies for arbitrarily strong degree correlations between
neighbors. The price to be paid for a more refined approxi-
mation is the requirement of greater knowledge of the net-
work �e.g., use of Eq. �18� requires knowledge of P�z� �z�
which is not required for the two other less refined approxi-
mations�.

We caution that, although we have obtained good agree-
ment between the theory and numerical results on simulated
networks, this may not necessarily carry through for real
networks encountered in practice. In particular, the Markov
assumption of Eq. �17� may not always hold �e.g., due to
community structure �26�, clustering, or edge degree corre-
lations extending over more than one edge between nodes�.
This remains a topic for further study.
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