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Abstract

The standard particle-in-cell algorithm su�ers from grid heating. There exists
a gridless alternative which bypasses the deposition step and calculates each
Fourier mode of the charge density directly from the particle positions. We
show that a gridless method can be computed e�ciently through the use of an
Unequally Spaced Fast Fourier Transform (USFFT) algorithm. After a spectral
�eld solve, the forces on the particles are calculated via the inverse USFFT (a
rapid solution of an approximate linear system) [1, 2]. We provide one and two
dimensional implementations of this algorithm with an asymptotic runtime of
O(Np +ND

m logND
m ) for each iteration, identical to the standard PIC algorithm

(where Np is the number of particles and Nm is the number of Fourier modes,
and D is the spatial dimensionality of the problem) We demonstrate superior
energy conservation and reduced noise, as well as convergence of the energy
conservation at small time steps.

Keywords: Numerical, Plasma, Particle-in-cell, Energy conserving,
Momentum conserving, Fourier transform

1. Introduction

A common approach to numerically solving the Vlasov-Poisson system is to
represent the distribution function using particles, with �elds solved on a grid
and interpolated at the particle positions [3, 4]. This scheme, known as the
particle-in-cell (PIC) method, has been enormously successful for simulating
plasmas and is used in a wide variety of applications, but does not conserve
total energy [5]. Energy-conserving schemes based on variational formulations
have been proposed [6, 7], but generally do not conserve momentum because of
a lack of translational invariance [8], though the momentum error can be kept
small in many cases due to the choice of integrator [9].

In addition to the lack of energy conservation, PIC also su�ers from a �nite
grid instability, in which su�ciently high Fourier modes experience exponential
growth [10, 11] due to coupling with lower modes. This phenomenon causes
numerical heating, which saturates when the Debye length is on the order of
the grid spacing [10, 8]. The �nite grid instability is of particular relevance
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to problems involving cold plasmas or multiple length scales [10, 12]. Various
approaches have been proposed to reduce this instability, such as the use of
smoother particle shapes [13], grid jiggling [12], �ltering [14], and high-order
Galerkin methods [13], but many of these schemes su�er from issues such as a
lack of charge conservation and high computational costs.

Several energy-conserving particle algorithms [6, 7] based on the Lagrangian
formulated by Low [15] have been suggested as alternatives to PIC. Charge-
conserving approaches [9, 16] using implicit time integration have also been
proposed. Energy-conserving algorithms have the bene�t of eliminating numer-
ical heating, but su�er from several drawbacks. They generally do not conserve
momentum [17], sometimes su�er from increased noise, and heavily restrict the
choice of particle shape [8]. However, these methods have seen widespread use
due to their e�ciency and simplicity.

It has been demonstrated that exact energy and momentum conservation
in a particle code can be achieved by depositing charge on a truncated Fourier
basis [8]. This method has also been shown to eliminate the �nite grid instability
and reduce coupling between modes [18]. However, due to the poor scaling and
high computational cost of this approach (O(NmNp), where Nm is the number
of Fourier modes and Np is the number of particles), it has not been seriously
considered in practice.

We present a similar algorithm to the one proposed in [8], in which we
model the charge density as a sum of shape functions in continuous space and
perform the �eld solve with a truncated Fourier series. However, we reduce
the computation time to O(Np + Nm logNm), which is equivalent to that of
conventional PIC with a spectral �eld solve, by making use of an Unequally
Spaced FFT (USFFT) [1, 2].

This paper is organized as follows: we begin by reviewing the standard PIC
method in Section 2. We then propose a gridless algorithm based on [8] and
demonstrate that it can be made e�cient via the USFFT. In Section 3, we
analyze the results of several numerical experiments, comparing our code to an



r �E =
�

�0
: (2)

2.1. Particle-in-Cell Method

The Vlasov-Poisson system is commonly solved via the particle-in-cell (PIC)
algorithm [3, 4], which tracks particles in continuous phase space, while �elds are
tracked on a spatial grid with Ng points. Each timestep begins by calculating
the charge density �(x) at the grid points from the particle positions (denoted
Xi). This is accomplished via a deposition of charge on the grid, such that

�x =
X
i

qS(Xi � x) (3)

where S is some shape function corresponding to the weighting scheme. E
and � are then calculated at the grid points from �, usually via spectral methods,
as follows:

~�k =
X

x

�xe
�ik�x; (4)

~Ek =
1

ik�0
~�k; (5)

~�k =
1

k2�0
~�k; (6)

Ex =
X

k

~Eke
ik�x: (7)

After the �eld solve, the forces on the particles are calculated by interpolating
the E-�eld from the grid to the particle positions as

Fi =
X

x

qExS(Xi � x): (8)

In this paper, we assume without loss of generality that the same weighting
scheme is used for both deposition and interpolation, but this need not be the
case.

The particles are then pushed forward, necessitating discretization in time.
Our implementation of PIC (as well as our algorithm, which we discuss in section
2.2) makes use of the leapfrog integrator. Position and velocity are tracked at
alternating timesteps, as follows:

Xn+1
i = Xn



2.2. Particle-in-Fourier Method

Our algorithm, termed Particle-in-Fourier (or PIF), begins by following es-
tablished gridless algorithms [8]. Instead of depositing the charge on a grid, we
treat �(x) as a sum of shape functions in continuous space and \deposit" on a
truncated Fourier basis. This can be accomplished by calculating each mode of
~� directly from the particle positions, as

~�k =

Z L

0

dx e�ik�x�(x); (11)

=

Z L

0

dx e�ik�x
NpX
i=1

qS(x�Xi



2.3. Unequally Spaced Fast Fourier Transform (USFFT)

Our algorithm relies on rapid evaluation of two computationally expensive
sums: X

i

e�ik�Xi ; (17)

which must be performed for every mode, andX
k

~Sk
~Eke

ik�Xi ; (18)

which must be performed for every particle. Naively, computing these sums
requires O(NpN

D
m ) operations for Np particles and Nm modes in each direction.

However, we can reduce the computational cost by using an Unequally Spaced
FFT (USFFT) [1, 2].

Let us briey describe the basics of USFFT algorithm (in one dimension,
for simplicity). We want to compute the values of the Fourier transform of a
generalized function

f (x) =
X

cm� (x� xm) (19)

that is,

bf (�) =
X
m

cme
�i�xm ; (20)

in an interval j�j � c. A generic approach is to replace f with a smooth (i.e.
many times di�erentiable) periodic function g, such that its Fourier transform

accurately approximates the Fourier transform bf in the interval j�j � c. Once
the function g and its values are available, we can then use the FFT to evaluate
the Fourier transform bg (instead of bf) at an equally spaced grid. Note that, due
to the required smoothness of g, bg must decay rapidly.

If we were to have direct access to the Fourier domain, then it would easy
to construct g by simply multiplying bf by a smooth function bw (the so-called
window function), such that it is close to 1 for j�j � c and rapidly decays to zero
for j�j � c. Multiplying by bw is equivalent to the convolution with w in space,
thus leading to a relatively fast algorithm suggested in [19]. However, if the
transition of bw from one to zero is rapid, then the convolution with w will be
computationally expensive; if the transition is gradual, then the interval in the
Fourier domain becomes large and, again, the computational cost is signi�cant.
An algorithmic solution is to construct the window bw as a ratio of two functions,
a rapidly decaying numerator that is applied in space as a convolution, and a
denominator, that is applied in the Fourier domain as a \compensating" factor.

There are many possible choices for the numerator of bw. [2] uses a Gaussian



In one dimension, the USFFT algorithm computes the sum

~gn =

NpX
l=1

gle
�2�ixln (21)

for all �Nm=2 � n � Nm=2, where xl 2 [�1=2; 1=2] (equivalent to xl 2 [0; 1])
and gl are arbitrary complex coe�cients. The dual version of the USFFT rapidly
evaluates the sum

g(xl) =

Nm=2�1X2
�0 N



using OpenMP (see Section 5 for more details). Source code can be found at
https://github.com/matt2718/ftpic.

The superior energy conservation of PIF becomes evident when we exam-
ine the the two stream instability. The 1D implementations of PIF and PIC
were used to simulate the mixing of two counter-moving electron beams against
a neutralizing background. Both codes were run with 10000 particles and 16
modes/grid cells for 20000 time steps, with the e�ective grid spacing equal to ap-
proximately 0:88�D. Fig. 1 plots the normalized �eld, kinetic, and total energy
of each system. It is clear that the total energy is not conserved for conventional
PIC. Fig. 2 illustrates the total energy over time for both simulations, demon-
strating energy conservation in PIF, but not in PIC. The peak in the energy

https://github.com/matt2718/ftpic


Fig. 2: Comparison of total energy over time in 1D PIF and PIC simulations of the two stream
instability, demonstrating the superior energy conservation of PIF. For PIF, the maximum
deviation from the initial energy was 4 � 10�6.





Fig. 6: Comparison of total energy over time in 2D PIF and PIC simulations of Landau
damping, demonstrating the superior energy conservation of PIF in two dimensions.

and

d

dt
T =

X
i

m _vivi (29)

=
X
i

 X
k

q ~Sk ~Eke
ikXi

!
vi (30)

=
X
i

X
k

qvi
ik�0

~Sk ~�ke
ikXi : (31)

Eq. (31) is the negative complex conjugate of Eq. (28). Because the �eld
quantities are Hermitian in Fourier space, and the sum in k runs from � 2�

L Nm
to 2�

L Nm (and because both the kinetic and �eld energies must be real), Eqs.
(28) and (31) must sum to 0, so total energy is conserved.

We have shown energy conservation in the continuous time limit, but an
actual simulation involves discretization in the time domain. Numerically, we
observe that the global truncation timestep error in the total energy of PIF
converges as O(�t2), in agreement with [8] and [18]. This holds in any number
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Fig. 7: 1D relative global error with respect to timestep size for a Landau damping test case
with 32 grid cells/modes and 20,000 particles. In agreement with [8], we see global convergence
of roughly O(�t2) for PIF in the asymptotic regime.

Fig. 8: 2D global error with respect to timestep size for a Landau damping test case with
32 � 32 grid cells/modes and 20,000 particles, also in agreement with literature.

Though we only provide one and two-dimensional implementations, the same
scheme can be extended to three dimensions, while still scaling well. In any num-
ber of dimensions, the generalized USFFT requires O(Np + ND

m logND
m ) time

(where D is the dimensionality of the system). As an ordinary D-dimensional
FFT requires O(ND

m logND
m ) time, the scaling is identical to that of PIC regard-

less of the dimensionality.
In addition, because convolution with an arbitrary shape function corre-

sponds to multiplication in Fourier space, increasing the width of the shape
function beyond a single grid cell requires no additional time. This can provide
a huge advantage for PIF as higher order shape functions (even Gaussian) are
essentially free, whereas in PIC, higher order shape functions involve many more
calculations and di�cult-to-parallelize scatter operations.

For reasonable parameters, the Np term dominates over the Nm logNm term.

11



Fig. 9: 1D PIF performance with respect to particle number and mode number. We see
asymptotic time complexity approximating O(Np + Nm log Nm) as predicted by theory.
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Fig. 10: 2D PIF performance with respect to particle number and mode number. As in the
1D case, we see agreement with the theoretical scaling of O(Np + N2

m log N2
m).

This suggests the following parallelization scheme for PIF (similar to one com-
monly used for PIC): we divide the particles between nodes, with each node
performing the �eld solve for its own particles (i.e. each node evaluates the
serial USFFT independently for a fraction of the particles). Before the push
step, the E-�elds from every node are summed together. To test this scheme,
we created a simple shared memory implementation of it in the one dimensional
versions of PIF and PIC.

In order to verify that this scaling holds, the two 1D codes were run for
1000 time steps with 80000 particles and 64 grid cells/mode on a single 68-core
Xeon Phi node of the Cori supercomputer at the National Energy Research
Scienti�c Computing Center (NERSC). Both codes were compiled with GCC.
The number of OpenMP threads was varied from 1 to 64, with the problem size

12



kept constant. For each data point, the code was run 4 times, with the variation
in runtime indicated by the error bars in Fig. 11. Both algorithms exhibited
similar strong scaling, as shown in Fig. 11. On average, PIF required 2.9 times
as much time as PIC, and the two algorithms demonstrated comparable scaling.

1 2 4 8 16 32 64
0.1

0.4

1.6

6.4

25.6

Fig. 11: 1D PIF has comparable strong scaling to 1D PIC as the number of threads is increased
from 1 to 64, with 80000 particles and 64 grid cells.

Weak scaling was investigated by increasing the problem size, such that each
run had 20000 particles per thread. The number of grid cells was kept constant
between runs. Results are shown in Fig. 12. We see that PIF demonstrates bet-
ter weak scaling than our implementation of PIC for large numbers of particles.
We suspect that this is because of the di�culty of parallelizing the deposition
step due to the scatter operations involved.

Fig. 12: 1D PIF has superior weak scaling to 1D PIC as the number of threads is increased
from 1 to 64, with 20000 particles/thread and 64 grid cells.
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6. Discussion

We have demonstrated that the PIF gridless scheme is a feasible approach to
plasma simulation, as it can be implemented with comparable performance and
identical scaling to the conventional PIC method while conserving both energy
and momentum in the continuous-time limit. We have provided an analysis
of these conservation properties and veri�ed them through several numerical
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