
FAST AND ACCURATE PROPAGATION OF COHERENT LIGHT

RYAN D. LEWIS, GREGORY BEYLKIN, AND LUCAS MONZÓN

Abstract. We describe a fast algorithm to propagate, for any user-specified
accuracy, a time-harmonic electromagnetic field between two parallel planes
separated by a linear, isotropic, and homogeneous medium. The analytic for-
mulation of this problem (circa 1897) requires the evaluation of the so-called
Rayleigh-Sommerfeld integral. If the distance between the planes is small,
this integral can be accurately evaluated in the Fourier domain; if the dis-
tance is very large, it can be accurately approximated by asymptotic meth-
ods. In the large intermediate region of practical interest
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(1.1) u (x, z) = − 1

2π

∫

R2

f (y)
∂

∂z

(
ei2πR

R

)
dy, z > 0,

where R =

√
z2 + ‖x − y‖2. Given the field u (y, 0) = f (y) in the plane z = 0,

(1.1) describes the field u (x, z), z > 0, that satisfies the Sommerfeld radiation
condition. Expressing all distances in wavelengths, we note that if the propagation
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numerically (e.g., measured, or produced by a computational procedure such as
phase recovery), such analytic expansions can yield only a limited accuracy. We
further comment on this topic in §C.4 of the online supplement.

The need for an accurate propagation algorithm arises in areas such as compu-
tational holography [14], optical component design [20], and antenna design [2]. A
particularly interesting application area is X-ray diffraction microscopy [23], and
related techniques, where one attempts to form an image of a microscopic sam-
ple from measurements of the magnitude of its diffraction pattern. These inverse
problems are usually solved by iterative methods that include a light propagation
algorithm. Therefore, the accuracy of the propagation algorithm ultimately limits
the accuracy of the reconstructed image. The speed of a propagation algorithm is
obviously also of critical importance for applications employing iterative methods.

The numerical algorithms that we use are designed to yield any user-specified
accuracy. This includes controlled accuracy in the rapid computation of integrals.
The methods that we employ for this purpose (specifically the USFFT and gener-
alized Gaussian quadratures for band-limited functions) can significantly improve
the performance and accuracy of even the standard methods for light propagation
(see §§A and B of the online supplement).

The paper is organized as follows. The necessary mathematical preliminaries
are reviewed in §2. We describe our new algorithm in §3, then discuss its region of
validity in §4. In §5 we provide several numerical examples, then summarize our
results in §6. By introducing this new algorithm, we hope to stimulate accuracy
improvements in computational optical systems by essentially eliminating numerical
errors.

2. Preliminaries

2.1. The Rayleigh-Sommerfeld Formula. The behavior of a time-harmonic
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Given the boundary data u (x, 0) = f(x), we rewrite (1.1) as

(2.2) u (x, z) =

∫

R2

f (y)Kz (‖x − y‖) dy,

where the Rayleigh-Sommerfeld kernel Kz (r) is given by

(2.3) Kz (r) =
ei2πz

√
1+(r/z)2

iz




1

1 + (r/z)
2 +

i

2πz
(

1 + (r/z)
2
) 3

2


 , r ≥ 0.

Denoting the Fourier transform of the boundary data as

f̂ (p) =

∫

R2

f (x) e−i2πx·p dx,

we write (2.2) in the Fourier domain as

(2.4) u (x, z) =

∫

R2

f̂ (p) K̂z (‖p‖) ei2πx·p dp,

where the Fourier transform of the Rayleigh-Sommerfeld kernel (cf. [24] and refer-
ences therein) is given by

(2.5) K̂z (ρ) = ei2πz
√

1−ρ2
, ρ ≥ 0.

Our goal is to evaluate (2.2) accurately in such a way that the computational cost
does not increase with the distance z. It is clear that the spatial kernel Kz (r) is a
highly oscillatory function of r when z is small, and that the Fourier domain kernel

K̂z (ρ) is a highly oscillatory function of ρ when z is large. For many physically

interesting choices of the distance z in the intermediate region, Kz (r) and K̂z (ρ)
are both highly oscillatory, making the direct numerical computation of u using
either (2.2) or (2.4) impractical. In §3 we will show how to approximate (2.3)
with controlled error and then describe a fast and accurate algorithm to apply the
resulting approximate Green’s function to boundary data. Our algorithm mainly
addresses the propagation problem for intermediate and large values of z. For small
values of z, it is well known that the problem may be solved using Fourier methods
and for very large values of z, the problem may be solved using asymptotic methods
(see §§A and B of the online supplement).

Remark 1. Given the normal derivative of the boundary data

∂

∂z
u(x, z)

∣∣∣∣
z=0

= g (x) ,

Lord Rayleigh’s formula for the Neumann problem reads

(2.6) u (x, z) = − 1

2π

∫

R2

g (y)
ei2πR

R
dy, R =

(
z2 + ‖x − y‖2

) 1
2

, z > 0.

With minor modifications, our approach is also applicable to evaluating (2.6).
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2.2. Slepian Functions. All physically realistic fields must eventually decay in
space and, at the same time, are essentially band-limited in the Fourier domain. An
appropriate mathematical description of such fields was initiated by Slepian and his
collaborators in [27, 17, 18, 25, 26] by considering a space-limiting and band-limiting
integral operator and using its eigenfunctions to identify a class of functions that
have controlled concentration in both the space and the Fourier domains. Slepian
et al. showed that this integral operator commutes with the differential operator
of classical mathematical physics describing the prolate spheroidal wave functions,
i.e., both operators share the same eigenfunctions.

For our purposes, we use eigenfunctions with controlled concentration in a square
in the spatial domain and band-limited to a disk in the Fourier domain. The
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2.2.1. The Unequally Spaced Fast Fourier Transform. We need to evaluate trigono-
metric sums of the form

M∑

m,m′=1

τmτm′f (ymm′) eix·ymm′

at output points xnn′ = (xn, xn′), where n, n′ = 1, . . . , N . Such sums can be
evaluated rapidly, for any user-specified accuracy ǫ, using the USFFT (see [11, 3,

19]) with computational complexity O
(
N2
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2.4.
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When z is much larger than the spatial extent of f (y), it is common to make

the further approximation ei
π
z
‖y‖2 ≈ 1, which, when used in (2.12), leads to the



FAST AND ACCURATE PROPAGATION OF COHERENT LIGHT 9

We emphasize that in (3.2) the desired accuracy ǫK is scaled by the propagation
distance z since the magnitude of the kernel decays like z−1 along the optical axis.

Inspired by the Fresnel approximation, we rewrite the kernel as

Kz (r) =
ei2πzei

π
z
r2

iz
Az (r) ,

where

(3.3) Az (r) =




1

1 + (r/z)
2 +

i

2πz
(

1 + (r/z)
2
) 3

2


 e

i2πz
(√

1+(r/z)2−1− 1
2 (r/z)

2
)

.
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where c is the bandlimit of the input function f . Using the bandlimit c′, we dis-
cretize the integrals in (3.8), for a desired accuracy ǫQ, using the quadratures from
Theorem 2.

Let ymm′ = (ym, ym′) ∈ A, m,m′ = 1, . . . ,M , be the M×M tensor product grid
of quadrature nodes with the corresponding quadrature weights τmτm′ . We select
an N×N grid of output locations xnn′ = (xn, xn′) ∈ W , n, n′ = 1, . . . , N . We
then apply the quadrature from Theorem 2 to the integrals in (3.8) and obtain an
approximation to the output field at the desired locations as

(3.9) unn′ =
ei2πz

iz

L∑

ℓ=1

wℓ

M∑

m,m′=1

τmτm′T
(ℓ)
nn′mm′f (ymm′) ei2βℓxnn′ ·ymm′ .

In (3.9) the N×N×M×M fourth-order tensors T(ℓ), ℓ = 1
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Lemma 4. Let σ
(ℓ)
q , U

(ℓ)
nq , and V

(ℓ)
mq, where ℓ = 1, . . . , L,
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Theorem 5. The error of computing the field u from (3.1) using (3.15) is bounded
by

(3.18) |u (xnn′ , z) − ũnn′ | ≤ (ǫK + ǫQ + ǫR) ‖f‖1
z

.

The expression for ũnn′ in (3.15) allows us to evaluate the field rapidly. We first

apply Q
(ℓ)
mm′r as a pre-factor to the input samples f (ymm′
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To illustrate the difference between wmax and zmin for our method and w′
max and

z′min for the Fresnel approximation, let us choose ǫ = 10−3. If a = 5000 wavelengths,
then after propagating z = 5 × 106
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Figure 5.5. Comparison of the magnitude of the field for a focal
point 5◦ off the optical axis computed by our algorithm correct to 3
digits (left), and by the Fresnel approximation (right). To enhance

contrast, we plot the square root of the magnitude, |u (x1, x2)|1/2.
The Fresnel approximation shifts the location of the focal spot,
and blurs the boundaries between the mainlobe and sidelobes. See
also the bottom-right plot in Figure 5.4.
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in Figure 5.4 to better align the peaks of the solid and dashed lines. Unfortunately,
our example shows that the Fresnel approximation incorrectly computes the shape
of the focal spot, in addition to its position (compare the nulls between the main
lobe and side lobes in the bottom-right plot in Figure 5.4).

5.4. Representative Examples of Computational Cost. The computational



FAST AND ACCURATE PROPAGATION OF COHERENT LIGHT 21

6. Conclusions

We have described a fast algorithm for the propagation of coherent light between
parallel planes separated by a linear, isotropic, and homogeneous medium. In con-
trast to current algorithms, our algorithm achieves any user-specified accuracy. As
a consequence, we can rapidly and accurately compute the field in non-paraxial
regions, i.e., regions far from the optical axis, with computational complexity pro-
portional to that of the FFT. The overall result is a fast algorithm that can achieve
any user-specified accuracy over a large computational domain.
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