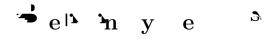
$\mathrm{ey}^{\texttt{A}}$ draft of INRIA lectures, May 1991 f

Wavelets, Multiresolution Analysis and Fast Numerical Algorithms

Bey n

. More to equate on o cope e a product $p_{j} = \frac{x}{i j} \frac{q_{i}q_{j}}{i}$

* e e oda y e e ed ade ceafo ed c n p d * en eq on o p e ne yae fo e coa of n n e en y l cond on n e of e ea nl cea f nae d of n e d * ence o n e e e en ep e en on a e e e e ep e en on of e de e a n e e e en a pe od c on



II.1 Multiresolution analysis.

e de non of e e pon ny a fano on nod ced y Meye , nd M , c pe a e e pen f e e a n e n e of x e a en o o a offene y e z; = o e e ne a x e n a e d offene e en e

$$V_{\mathsf{n}} \subset \quad \subset \mathsf{V} \ \subset \mathsf{V} \ \subset \mathsf{V} \quad \mathsf{V} \ \subset \mathsf{L} \ \mathsf{R}^{\mathrm{d}}$$

nn ec ez ona ea ap ce**V** a ned en aon

II.2 The Haar basis

o only e eonye peofe ep on nyaa fynl Condone Condone Cop ny contract pe of e lo a e dep en ep ec en dpo dea ef pooype fo n e c e pe en on fd — en **p j**; **k** — **j** = **j** _ -; $\in \mathbf{Z}$ afo ed y ed on nd na on of an ef nc on

$$\begin{array}{c} \mathbf{a} \\ \mathbf{a} \\ \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{c} \\ \mathbf{c} \\ \mathbf{e} \\ \mathbf{$$

n ac j_{ijk} — ee j_{ijk} c j_{ijk} — j_{ijk} = j_{ijk}

e deco pos on of f nc on no \mathbb{P} as a no de N poced e en $N = {}^{\mathsf{n}}$ a pes of f nc on c y fo a p c y e o l of a es of \mathfrak{x} ed e l e of f on ne sof en ${}^{\mathsf{n}}$

$$\mathbf{k} = \frac{\mathbf{z}_{-n} \mathbf{k}}{-n \mathbf{k}} f d$$

e o n 🗗 coe c en 🌲

$$d_{\mathbf{k}}^{\mathbf{j}+} = -\frac{\mathbf{j}}{\sqrt{\mathbf{k}}} \mathbf{k} - \frac{\mathbf{j}}{\mathbf{k}}$$

nd e le

$$\frac{\mathbf{j}}{\mathbf{k}} - \frac{\mathbf{j}}{\sqrt{\mathbf{k}}} \mathbf{k}$$

fo : n - nd n - n

o e nd d fo é e cond a de ned y e e of ee nd of a f nc on a ppo ed on a e j;k j;k' y j;k j;k' y nd j;k j;k' y e e e c c e a c f nc on of e n e nd j;k — j = j _ "ep e en n' n ope o n a a e da o e non a nd d fo e e no of y eco e c e e By con de n' n n e ope o

$$f = - y f y dy$$

nd e p nd n' e ne n od en son \sum a e nd fo C de on Zyl nd nd pe do d e en ope o e dec y of en ea a f nc on of e d a nce f o e d l'on af a e n e e ep e en on a n n e o l'n e ne e e c ae sof ope o e l'en y nel o d a on e ne a e soo y f o e d l'on o e p e e ne y of C de on Zyl nd ope o a fy e e e

$$| \qquad y | \leq \frac{1}{|-y|}$$
$$| \underset{\mathbf{x}}{\mathsf{M}} \qquad y | \quad | \underset{\mathbf{y}}{\mathsf{M}} \qquad y | \leq \frac{C_{\mathsf{M}}}{|-y|}$$

fo $p \in M \ge$ Le M — n nd con de z z $j_{\mathbf{k}\mathbf{k}'}$ — $y_{\mathbf{j};\mathbf{k}}$ $\mathbf{j};\mathbf{k}' y d dy$ e e e p e e d p nce e een $|-'| \ge$ nce z

e e

$$\downarrow$$
 \downarrow \downarrow $fr X$

e on el nn edecy na cen o eco p nl n a p c c to e fae decy aneceasy o e afncona e e na nl o ena e na nl o ena e epona efo nnl p c c lo a e con o nl e cona na n eco pe yea eaof efa lo a

II.3 Orthonormal bases of compactly supported wavelets

Le a contade e e at on n y to $L \mathbb{R}^7$ net n f d d π

econd e o of on y of $\{ -\}_{\mathbf{k} \mathbf{Z}}$ p e \mathbf{z} \mathbf{z}_{+} \mathbf{z}_{+} \mathbf{k}_{-} - d_{-} $|\mathbf{x}_{+}|$ e $\mathbf{k} d\mathbf{z}$

nd e efo e

$$\begin{array}{c|c} \mathbf{z} & \mathbf{x} \\ \mathbf{k} & \overline{\phantom{\mathbf{x}}} & \mathbf{x} \\ & \mathbf{i} & \mathbf{z} \end{array} |_{\mathbf{x}} \mathbf{x} & \mathbf{y} \mid e^{-\mathbf{i}\mathbf{k}} d\mathbf{x} \\ & \mathbf{x} \end{array}$$

nd

≱nl

eon X 1 Z

Lemma II.1 Any trigonometric polynomial solution \sim of (2.26) is of the form

$$\stackrel{\mathbf{h}}{\mathbf{r}} \stackrel{\mathbf{i}_{\mathbf{M}}}{\mathbf{r}} = \frac{1}{2} e^{\mathbf{i}} e^{\mathbf{i}}$$

k

where $M\geq$ is the number of vanishing moments, and where $% M\geq$ is a polynomial, such that

eⁱ |
$$-P$$
 an $\frac{1}{2}$ an M $\frac{1}{2}$ $\frac{1}{2}$ co and $\frac{1}{2}$ $\frac{1}$

where

and is an odd polynomial, such that

$$\leq P y \quad y^{\mathsf{M}} \quad \frac{1}{2} - d \qquad \qquad \neq \qquad ;$$

f

e e $d_{\mathbf{k}}^{\mathbf{j}}$ nd $d_{\mathbf{k}}^{\mathbf{j}}$ y e e ed ape od c eq encea e pe od \mathbf{n} j Co p n i nd a e ed y e py d e e

∳e	en de ne $f_{m} = f_{m}$ M c e n	$-$ m \cdot f	eę m	acoan a	$\langle f_{\mathbf{m}} \stackrel{\mathbf{M}}{\longrightarrow} \rangle$ — fo
- 124	M c e n	e de ≱ ed o	olon	у о М	y e con n e o

$$V_j^{M;} = V_j^{M;} W_j^{M}$$

 \mathcal{F} e \mathcal{F} ce \mathcal{W}^{M} ; \mathcal{F} and \mathcal{F} e o ono \mathcal{F}

$$\{ \mathbf{i} \mid \mathbf{y} \quad \mathbf{i} \quad \mathbf{y} \quad \mathbf{i} \quad \mathbf{y} \quad \mathbf{k} \quad \mathbf{y} \quad \mathbf{k} \quad \mathbf{y} \quad \mathbf{k} \quad \mathbf{y} \quad \mathbf{k} \quad \mathbf{y} \quad \mathbf{y}$$

, e ap ce W_j^{M} ; a ap nned y d on a nd n a on a of e a af nc on a of W^{M} ; nd e a a of L , con a a a of e a f nc on a nd e o o de po y no a y^{I} , - M -

y' = M e no e e o d en aon e e e e e e q e M d e en co n on a of one d en aon a f nc on a e e M a e n e of n a n' o en a On e o e nd e o d en aon e a o ned y an' co p c y a ppo ed e e a eq e on y ee a c co n on a c a p e a e con a c on of e non a nd d fo e e e c on

II.5 A remark on computing in the wavelet bases

n y enoe once e e een coen copeeydee nee e f nc on and nd eefoe e eo on n y a an nee and o e on npopeycon ced lo a ef nc on and ene e cop ed De o e ec a ed en on of e ee ea e np on a epe fo ed eq d e o e and e en f ey no eq n ea abc ed nd A a ne pe e acop e e o en aof e and f nc on e e perior fo e o en a

$$\mathcal{M}^{\mathsf{m}} = \overset{\mathsf{m}}{\overset{\mathsf{m}}{\longrightarrow}} d \overset{\mathsf{m}}{\overset{\mathsf{m}}{\longrightarrow}} M -$$

n e a of e e coe c en $a \{ k \}_{k}^{k L}$ y e fond $a n^{k}$ fo fo.

е е

$$\mathbf{r}^{\mathbf{r}} \mathbf{q}^{\mathbf{r}} \mathbf{r}} \mathbf{q}^{\mathbf{r}} \mathbf{q}^{\mathbf{r}} \mathbf{q}^{\mathbf{r}} \mathbf{q}^{\mathbf{r}} \mathbf{q}^{\mathbf{r}$$

$$\mathcal{M}_{r+}^{\mathsf{m}} \xrightarrow{j \times \mathsf{m}} \overset{\mathsf{l}}{\mathfrak{r}} \overset{\mathsf{jr}}{\mathfrak{M}_{r}^{\mathsf{m}}} \overset{\mathsf{m}}{\mathfrak{M}_{r}^{\mathsf{m}}} \overset{\mathsf{m}}}{\mathfrak{M}_{r}^{\mathsf{m}}} \overset{\mathsf{m}}{\mathfrak{M}_{r}^{\mathsf{m}}} \overset{\mathsf{m}}}{\mathfrak{M}_{r}^{\mathsf{m}}} \overset{\mathsf{m}}{\mathfrak{M}_{r}^{\mathsf{m}}} \overset{\mathsf{m}}{\mathfrak{M}_{r}^{\mathsf{m}}} \overset{\mathsf{m}}{\mathfrak{M}_{r}^{\mathsf{m}}} \overset{\mathsf{m}}{\mathfrak{M}_{r}^{\mathsf{m}}} \overset{\mathsf{m}}{\mathfrak{M}_{r}^{\mathsf{m}}} \overset{\mathsf{m}}{\mathfrak{M}_{r}^{\mathsf{m}}} \overset{\mathsf{m}}{\mathfrak{M}_{r}} \overset{\mathsf{m}}{\mathfrak{M}_{r}} \overset{\mathsf{m}}} \overset{\mathsf{m}}{\mathfrak{M}_{r}} \overset{\mathsf{m}}}{} \overset{\mathsf{m}}} \overset{\mathsf{m}}} \overset{\mathsf{m}}{\mathfrak{M}_{r}} \overset{\mathsf{m}}} \overset{\mathsf{m}}{\mathfrak{M}_{r}} \overset{\mathsf{m}}}{} \overset{\mathsf{m}}} \overset{\mathsf{m}}{\mathfrak{M}_{r}} \overset{\mathsf{m}}} \overset{\mathsf{m}}} \overset{\mathsf{m}}{\mathfrak{M}_{r}} \overset{\mathsf{m}}} \overset{\mathsf{m}}{} \overset{\mathsf{m}}} \overset{\mathsf{m}}}{} \overset{\mathsf{m}}} \overset{\mathsf{m}}} \overset{\mathsf{m}}}{} \overset{\mathsf{m}}} \overset{\mathsf{m}}} \overset{\mathsf{m}}} \overset{\mathsf$$

c eco $\{\mathcal{M}_{\mathbf{r}}^{\mathbf{m}}\}_{\mathbf{m}}^{\mathbf{m}} \stackrel{\mathbf{M}}{\longrightarrow}$ eperaM o en sof epod c n r e s nd s e on con eles pdy No ce en e co p ed efnc on s f

e non³ nd d nd³ nd d fo³

III.1 The Non-Standard Form

Le e n ope o

 $\mathbf{L} \ \mathbf{R} \to \mathbf{L} \ \mathbf{R}$ e e ne y De n n² po econope o son e so $\mathbf{V}_{\mathbf{j}} ; \in \mathbf{Z}$

 $P_j \quad \mathbf{L} \quad \mathbf{R} \rightarrow \mathbf{V}_j$

2

$$P_{\mathbf{j}}f = -\frac{\mathbf{X}}{\mathbf{k}} \langle f \mathbf{j}; \mathbf{k} \rangle \mathbf{j}; \mathbf{k}$$

ndepndn[°] n "eezopczeezeo n

e e

of pe 🌲

$$\mathbf{j} = P_{\mathbf{j}} - P_{\mathbf{j}}$$

 \clubsuit epoeconopeo on e \clubsuit \clubsuit ce W_{j} f ee \clubsuit eco \clubsuit \clubsuit en en næd of e e

nd f e z e ; .-- z e ne z z e en

$$\begin{array}{c} \mathbf{X} \\ - \\ \mathbf{j} \\ \mathbf{j} \end{array} \quad \mathbf{j} \quad \mathbf{P}_{\mathbf{j}} \quad \mathbf{P}_{\mathbf{j}} \quad \mathbf{j} \quad \mathbf{P}_{\mathbf{n}} \quad \mathbf{P}_{\mathbf{n}} \quad \mathbf{P}_{\mathbf{n}} \end{array}$$

ee ~ -P P d ze z on of eope o on e ne ze pn on ze nd deco po ze eope o no zof con on zfo d e en zez r e non znd d fo zepezen on ze 7, of eope o z c n

$$-\{A_j \ B_j \ j\}_j \mathbf{z}$$

c n on e , p ce V_j nd W_j

 $\begin{array}{ll} A_{\mathbf{j}} & \mathbf{W}_{\mathbf{j}} \rightarrow \mathbf{W}_{\mathbf{j}} \\ \\ B_{\mathbf{j}} & \mathbf{V}_{\mathbf{j}} \rightarrow \mathbf{W}_{\mathbf{j}} \end{array}$

 $A_{j} = P_{j}$ j e ope o $A_{j} = A_{j} =$

$$\mathbf{j} = \begin{array}{c} A_{\mathbf{j}+} & B_{\mathbf{j}+} \\ \mathbf{j} = \begin{array}{c} \mathbf{j} \\ \mathbf{j} \\ \mathbf{j} \end{array}$$

eeope o≱j.−Pj Pj

$${}_{j} \hspace{0.2cm} V_{j} \rightarrow V_{j}$$

nd e ope o ep e æn ed y e × n 🌲 pp n

$$\begin{array}{cccc} & & & \mathbf{I} \\ A_{\mathbf{j}+} & B_{\mathbf{j}+} & & \\ \mathbf{V}_{\mathbf{j}+} & \mathbf{j}+ & & \\ \mathbf{V}_{\mathbf{j}+} & \mathbf{V}_{\mathbf{j}+} & \oplus \mathbf{V}_{\mathbf{j}+} & \oplus \mathbf{V}_{\mathbf{j}+} \end{array}$$

f e e a co aa a e n en

$$= \{ \{A_j \mid B_j \mid j \} j \mid \mathbf{Z} j \mid \mathbf{n} \mid \mathbf{n} \}$$

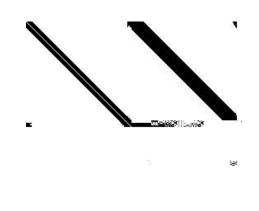
ee $n = P_n P_n$ f en e of zer ne en -n n e ope of e of nzed a octoof e zer let nd Let e e foonlote on a nd

Preope o Ajdeze e e e e con on e ze e on y ance e a apce Win anee en of edecan

 \mathcal{F} eope o $\mathcal{A}B_{\mathbf{j}}$, \mathcal{J} n nd de \mathcal{A} e e ne con e een e \mathcal{A} e : nd co \mathbf{z} \mathbf{z}^{\prime} e ndeed e \mathbf{z} \mathbf{z}^{\prime} con n \mathbf{z}^{\prime} e \mathbf{z} \mathbf{z}^{\prime} co $\mathbf{V}_{\mathbf{j}}$ con n \mathbf{z}^{\prime} e \mathbf{z} \mathbf{z}^{\prime} co $\mathbf{V}_{\mathbf{j}'}$

nd

A ₁			



, te Ane peof n e non , and d fo , pe pe

, i e ope o j≱epe,≱en ed y e j ZZ

$$\mathbf{j} \qquad \qquad y \quad \mathbf{j}; \mathbf{k} \quad \mathbf{j}; \mathbf{k}' \quad y \quad d \quad dy$$

en \mathbf{k} of coe c en $\mathbf{k}_{\mathbf{k},\mathbf{k}'}$ ' \mathbf{k} N - epe ed pp c on of e fo \mathbf{k} ' p od ce \mathbf{k}

III.2 The Standard Form

re≱nd d fo ≱o ned y epe≱en n^k

nd con a de n' fo e c \mathbf{z} e \mathbf{z} e ope o $\mathbf{z} \{B_{\mathbf{j}}^{\mathbf{j}'}, \mathbf{j}_{\mathbf{j}}^{\mathbf{j}'}\}_{\mathbf{j}'>\mathbf{j}}$

$$B_{\mathbf{j}}^{\mathbf{j}'} \quad \mathbf{W}_{\mathbf{j}'} \to \mathbf{W}_{\mathbf{j}}$$
$$(\mathbf{j}_{\mathbf{j}}^{\mathbf{j}'} \quad \mathbf{W}_{\mathbf{j}} \to \mathbf{W}_{\mathbf{j}'}$$

f e e a e co aaa aa e n en naae d of e e

$$V_j = V_n^{j \in M} W_j$$

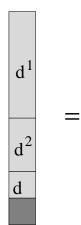
n $A = e \text{ ope } o = \{B_{\mathbf{j}}^{\mathbf{j}'}, {\mathbf{j}'}\} \text{ fo } ; ' = ; n = e = e = n$ nd 7 nd n dd on fo e c $\mathbf{z} = e;$ e e e ope o $\mathbf{z} \{B_{\mathbf{j}}^{\mathbf{n}+}\} \text{ nd } \{., {\mathbf{j}^{\mathbf{n}+}}\}$

$$B_{\mathbf{j}}^{\mathbf{n}+} \quad \mathbf{V}_{\mathbf{n}} \to \mathbf{W}_{\mathbf{j}}$$
$$, \overset{\mathbf{n}+}{\mathbf{j}} \quad \mathbf{W}_{\mathbf{j}} \to \mathbf{V}_{\mathbf{n}}$$

n ano on n^{n+} — n nd B_n^{n+} — B_n f en e of x ea an e nd V an e d en aon en e and d fo a ep ea on on of -P P a

$$= \{A_{\mathbf{j}} \{B_{\mathbf{j}}^{\mathbf{j}'}\}_{\mathbf{j}'}^{\mathbf{j}'} \stackrel{\mathbf{n}}{\mathbf{j}} = \{A_{\mathbf{j}}, A_{\mathbf{j}}^{\mathbf{j}'}\}_{\mathbf{j}'}^{\mathbf{j}'} \stackrel{\mathbf{n}}{\mathbf{j}} = B_{\mathbf{j}}^{\mathbf{n}} + B_{\mathbf{j}}^{\mathbf{$$

feope of C de on Zyl nd o pre do eratoj /R36 (3aV)Tj /R360 Td (Figu65



e co p e^{33} on of ope o 3

. e co person of ope o so no e o da e cona c on of e p e epe en on no ono e d ec y e e peed of co p on lo e e co person of d of leafo e pe c e ed y e odro e n nd n p e eperen on n p e a y e deq e fo p e pp c on a e co person of ope o ac afo epern on n a a no de o e e e ey co p e n e p e fo e and d nd non and d fo aof ope o an e ee e y e e ed aco person e eafo de c aof nd non and d fo aof ope o the matrices j, j, j (3.16) - (3.18) of the non-standard form satisfy the estimate

$$| \mathbf{j}_{\mathbf{i};\mathbf{i}} | | \mathbf{j}_{\mathbf{i};\mathbf{i}} | | \mathbf{j}_{\mathbf{i};\mathbf{i}} | \leq \frac{C_{\mathsf{M}}}{|\mathbf{j}_{\mathbf{i}}|^{\mathsf{M}+1}} \qquad \mathbf{g}^{\mathsf{T}}$$

for all $| - \mathbf{y} | \geq M$.

ee 🗼 ed 🌲 on ene of

Proposition IV.2 If the wavelet basis has M vanishing moments, then for any pseudodi erential operator with symbol of and of satisfying the standard conditions

$$\begin{aligned} | \mathbf{x} \quad \mathbf{x} | &\leq C ; \quad |\mathbf{x} \quad \mathbf{x} \\ | \mathbf{x} \quad \mathbf{x} | &\leq C ; \quad |\mathbf{x} \quad \mathbf{x} \end{aligned}$$

the matrices j, j, j (3.16) - (3.18) of the non-standard form satisfy the estimate

$$| \mathbf{j}_{\mathbf{i};\mathbf{l}} | | \mathbf{j}_{\mathbf{i};\mathbf{l}} | | \mathbf{j}_{\mathbf{i};\mathbf{l}} | \leq \frac{\mathbf{j} C_{\mathsf{M}}}{|\mathbf{j}_{\mathbf{i}}|^{\mathsf{M}+\mathsf{M}+\mathsf{M}}} \qquad \mathbf{k}$$

for all integer , ,

f e ppo e e ope o \mathbb{N} y e ope o \mathbb{N} ; B o ned fo \mathbb{N} y e ope o \mathbb{N} ; B o ned fo \mathbb{N} y e nl o ze o coe c en of cea $\mathbf{i}_{j;1}^{j}$ nd $\mathbf{j}_{j;1}^{j}$ o de of nd of d $B \ge M$ o nd e d lon en en e y o pe

$$|| \mathbf{N}; \mathbf{B} - \mathbf{N}|| \le \frac{C}{B^{\mathbf{M}}} \text{ of } N$$

 $e \in C$, contant de endre endre endre endre notation de endre end

$$|| \mathbf{N}; \mathbf{B} - \mathbf{N}|| \le \frac{C}{B^{\mathbf{M}}} \text{ of } N \le \mathbf{A}$$

$$y = y$$

 $z = e$ efc y n y and e fnc on $z \in e$ nd e nd e efore
 e ope $o \downarrow L$ nd L \downarrow po $\downarrow z$ e o dec de f C de on Zy nd ope $o \downarrow$
 o nded

Theorem IV.1 (G. David, J.L. Journe) Suppose that the operator (3.1) satisfies the conditions (4.5), (4.6), and (4.16). Then a necessary and sum cient condition for the bounded on L is that in (4.24) and y in (4.25) belong to dyadic B M O, i.e. satisfy condition

$$\Pr_{\mathbf{J}} \Pr_{\mathbf{J}} | \mathbf{J} | \mathbf$$

where is a dyadic interval and

p n'eope o no ea of ee e e ndea n'e ep eyedao eea e e enoe efncona nd e e y co p ed n e pocea of cona c n'e non and d fo nd nd y e ed o p o de ef ea e of e no of e ope o

$e d^{n} e e n \cdot | ope o^{n} n e | e^{-n} e^{n}$

V.1 The operator d=dx in wavelet bases

e e $_{n}$ e e oco e on coe c en \bigstar of e e $.-\{\ _{k}\}_{k}^{k}$ L

$$\mathbf{L} \mathbf{X} \mathbf{n}$$

 $\mathbf{n} = \mathbf{L} \mathbf{i}$
 $\mathbf{i} \mathbf{i} + \mathbf{n} \mathbf{n} = \mathbf{L} - \mathbf{L}$

*a*e *a* o *a*e e oco e on coe c en *a* n e en nd ce *a* e ze o

nd ence nd , e e en o en sof e coe c en s k fo n s n e y

$$k = m - m - fo \leq M - k$$

ance

a $n_{\tau}^{*} = - a$ ee e 7 ari.─ ^bX ^kX⁺ ri.─ k k m ^r i+m k m k

C n' n' e o de of a on n d an' e f c P_{k} , - e

$$r_{\mathbf{l}} - r_{\mathbf{l}} \qquad \mathbf{n} \quad r_{\mathbf{l} \cdot \mathbf{n}} \quad r_{\mathbf{l} + \mathbf{n}} \quad \mathbf{t} \in \mathbf{Z}$$

e e **n** e **i** en n **a**n**i** e o **n** e **f** o
n o de o o n e **e** e fo o ni e on

ее

$$M'_{1} = \frac{d}{d} = \frac{d}{d}$$

e e o en sof e f nc on "e on fo o sa pyon nl o e n fo s nd snl Le n z e snl nd nd , - e o n f M > en

ee ndence en en n a pey con el en i a pe on fo o af o Le of , e e a o n

ее

$$B \longrightarrow \mathbf{p} | \mathbf{e}^{\mathbf{i}} |$$

De o e cond on e e of B - M - - p e , e e sence of p on of e y e of eq on a e nd fo o f o e e sence of e n e n nce e e n f nc on co p c ppo e e e on y 7 7 . d . "ee .ee . d p e . "

6

 $\propto \infty \in \{\in \{\infty\} \times \infty \neq \infty \in \{\infty \in \infty \times \infty \mid \infty \mid \in \mathbb{N}\}$

e e

$$r \ll r_{\rm l} e^{\rm il}$$

$$r_{\rm even} \ll r_{\rm l} e^{\rm il}$$

$$r_{\rm reven} \ll r_{\rm l} e^{\rm il}$$

$$r_{\rm r} e^{\rm il}$$

$$r_{\rm r} e^{\rm il}$$

nd

$$r_{\text{odd}} \ll r_{\text{I}+} e^{i (I+)} =$$

No cn

$$r_{\text{even}} \prec -r \prec r \prec$$

nd

$$r_{\text{odd}} \prec -r \prec -r \prec q$$

nd an eo nfo

, n y an e e

e n i = n e eo n r = r nd e e n q energe of e p on of e nd fo o fo e n q energe of e ep e en on of d en e p on r_1 of e nd e conside e ope o j de ned y e e coe c en son e p ce V_j nd pp y o p c en y p o f nc on f nce $r_1 = r_1$ e e e

$$jf = \begin{bmatrix} \mathbf{X} & \mathbf{j} & \mathbf{X} & \mathbf{i} \\ \mathbf{j} & \mathbf{j} & r_{\mathbf{i}} f_{\mathbf{j};\mathbf{k}-\mathbf{i}-\mathbf{j};\mathbf{k}} \\ \mathbf{k} & \mathbf{Z} & \mathbf{i} \end{bmatrix} \mathbf{k}$$

ее

$$f_{\mathbf{j};\mathbf{k}-\mathbf{l}} = \mathbf{j} = \mathbf{j} + f \qquad \mathbf{j} = -\mathbf{t} d \qquad \mathbf{k} + \mathbf{k}$$

1

d 👌 🥦 77
$$\mathbf{j}f = \frac{\mathbf{x} \mathbf{z}}{\mathbf{k} \mathbf{z}} \mathbf{z} + f' \mathbf{j}\mathbf{k} \mathbf{d} \mathbf{j}\mathbf{k}$$

$$\mathbf{j} \mathbf{x} \mathbf{z} \mathbf{z} + \mathbf{z} \mathbf{z} + \mathbf{z}$$

$$\mathbf{j} \mathbf{x} \mathbf{z} \mathbf{z} + f'' \mathbf{j}\mathbf{k} \mathbf{d} \mathbf{j}\mathbf{k}$$

$$\mathbf{j} \mathbf{x} \mathbf{z} \mathbf{z} + f'' \mathbf{j}\mathbf{z} \mathbf{z} \mathbf{z} + \mathbf{z}$$

ace $a \rightarrow -\infty$ ope of ind d concision for one and and d end are a opole -dd nd ence ear on o end and end e e on 7 foo ano fo

Remark 2 we note the pression and the probability of the probabilit

Examples. o ee per e P D ec er eerconrided not in the error of M ee M respectively M and L = M and L = M and R on P of M.

$$\mathbf{A} = -\frac{M-\mathbf{Z}}{M-\mathbf{M}} \mathbf{A} \mathbf{M} \mathbf{A} \mathbf{A}$$

e nd y co p n $R a \cap M = d$

$$\mathbf{x} = -C_{\mathsf{M}} \frac{\mathbf{x}}{\mathsf{m}} - \frac{\mathsf{m}}{M - \mathsf{r}} \frac{\mathsf{co}_{\mathsf{m}}}{\mathsf{m}} - \mathbf{x} = -\mathbf{x}$$

е е

$$C_{\mathsf{M}} = \frac{M - M}{M - e^{\mathsf{M}}}$$

ycopniend e e

$$\mathbf{m} - \frac{-\mathbf{m} C_{\mathbf{M}}}{M \overline{\mathbf{w}} - \mathbf{w}} = \mathbf{w} - M$$

o n'eq on sof opos on e pesen e es sfo D ec es e es M_{-} e 1 M_{-}

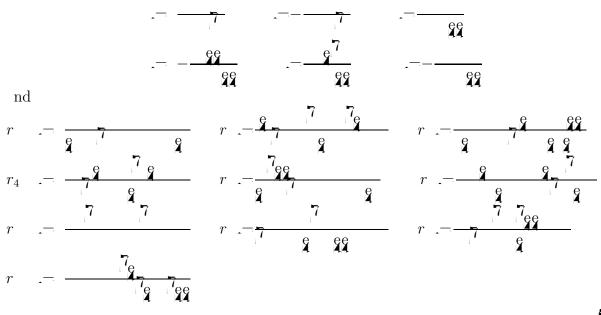
nd

r ____ r ___

, e coe c en a - , of a pec n e fond n ny oo a on n e c n yaa a c o ce of coe c en a fon e c d eren on

2 M.	
nd	$r = -\frac{7}{r}$ $r = -\frac{1}{r}$ $r_4 = -\frac{1}{r}$
3 <i>M</i> . nd	
	$r = -\frac{q}{q} \qquad r = -\frac{7}{2} \qquad r = -\frac{q}{q}$ $r_{4} = -\frac{q}{17} \qquad r = -\frac{q}{17} \qquad r = -\frac{q}{17}$
4 <i>M</i> .	$-\frac{9}{2}$
nd	$r_{4} = -\frac{7}{7} \frac{7}{7} r_{4} = -\frac{7}{7} r_{5} = -\frac{7}$

5 M .--



Coe c en fo M — nd M — c n e co p ed e co e pond n' o p fo e fo o n' e e lo

Iterative algorithm for computing the coe cients r_1 .

A y of p n eq on e nd e y p e n e e to e r_1 = nd r_2 = nd r_3 = nd e e nf e o eco p e r_1 e y o e fy nf e nd 7 e edde o e c o ce of n z on e fo o nf fo D ec e e e M_2 = 17 a lo dap ya e coe c en $a\{r_{\mathbf{I}}\}_{\mathbf{I}}^{\mathbf{L}}$ de no e coped an r $-r_{I}$ nd $r_{.}$

V.2 The operators $d^n = dx^n$ in the wavelet bases

o eope o d d enon a nd dfo of eope o $d^{n} d^{n} a$ co peey de e ned y **a** ep e**a**en on on e **a a**p ce **V** e y e coe c en **a**

$$r_{\mathbf{l}}^{\mathbf{n}} - \frac{\mathbf{z}_{+}}{\mathbf{z}_{+}} - \frac{d^{\mathbf{n}}}{\mathbf{z}_{+}} d \qquad \mathbf{z} \in \mathbf{Z}$$

0 en ey

f e net an o e a se
$$p^{n}$$
 e i $d \in C$

		Coe cients			Coe cients
	L	I		L	I
<i>M</i> = 5	1 2 3	-0.82590601185015 0.22882018706694 -5.3352571932672E-	M = 8	1 2	-0.88344604609097 0.30325935147672

Proposition V.2 1. If the integrals in (5.52) or (5.53) exist, then the coe cients $r_{I}^{(n)}$, $r_{I} \in Z$ satisfy the following system of linear algebraic equations

7

and

$$\mathbf{X}_{\mathbf{r}} \mathbf{r}_{\mathbf{r}}^{\mathbf{n}} \mathbf{r}_{\mathbf{l}}^{\mathbf{n}} = - \mathbf{n} \mathbf{n}$$

where $_{k}$ are given in (5.19).

2. Let $M \ge n$, where M is the number of vanishing moments in (2.16). If the integrals in (5.52) or (5.53) exist, then the equations (5.54) and (5.55) have a unique solution with a nite number of non-zero coe cients $r_1^{(n)}$, namely, $r_1^{(n)} \not\leftarrow$ for $-L \le r_1 \le L - \cdot$. Also, for even n

$$r_{I}^{n} - r_{I}^{n}$$

$$\mathbf{x}_{I}^{n} r_{I}^{n} - n - n -$$

$$\mathbf{x}_{I}^{n} r_{I}^{n} - n -$$

and

and for odd n

$$\begin{array}{ccc} & r_{\mathbf{l}}^{\mathbf{n}} & -r_{\mathbf{l}}^{\mathbf{n}} \\ \mathbf{X} & & \\ \mathbf{n} & r_{\mathbf{l}}^{\mathbf{n}} & -n_{\mathbf{l}}^{\mathbf{n}} \\ \mathbf{x} & & \\ \mathbf{x} & & \\ \mathbf{x} & & \\ \mathbf{y} & \leq L \end{array}$$

, e eq on fo co p n' e coe c en $r_1^{(n)}$ y e e ed a n e en e po e Le ade e e eq on co e pond n' o e fo $d^n d^n d$ ec y fo de e e

,[↑] e efo e

$$r \not \in \frac{\mathbf{X}}{|\mathbf{x}|}, \not \in |\mathbf{x}| \stackrel{\mathsf{n}}{\leftarrow} \stackrel{\mathsf{n}}{\leftarrow}$$

ее

$$r < - \frac{\mathbf{x}}{\mathbf{r}} r_{\mathbf{l}}^{\mathbf{n}} e^{\mathbf{i}\mathbf{l}}$$

no e l'indrade of indra no e e en indiodd indicean appey e e

Le aconade e ope o M on pe od c f nc on a d f n f

Ν	. 6 .	. - p
64	0.14545E+04	0.10792E+02
128	0.58181E+04	0.11511E+02
256	0.23272E+05	0.12091E+02
512	0.93089E+05	

e con o | $\sqrt{}$ on ope o $\sqrt{}$ in e |e $\sqrt{}$ e $\sqrt{}$

n \mathbf{a} ec on e contrade e cop on of e non \mathbf{a} nd d fo of con o on ope o \mathbf{a} . o con o on ope **e** \mathbf{a} eq d e fo **t** afo epeten n e e ne on \mathbf{V} e of e \mathbf{a} peter fo d e

nd e den y, 🛫 –, < 🛹 < 🚑 e , fo o 🎜 o o d 🎝

nce e o en sof e f nc on $n \neq 7$ eq on $e e d \neq c$ ponq d e fo fo cop n'e epern on of con o on c e ne per e fo co per y popo ed e e per fo po e a e nne afo e apec coce of e e e a de a e e e a fed o en a of e fnc on n a e efe e de 🏼 🌙

📭 ee en od ce dæren ppoc 🦳 c con 🚑 an 🔊 ne le ceq on a a ec o ay po c cond on a c y pefer of eope o po d'eneo pof ped c 🚁 e ope o 🌲 co peeyde ned y 🌲 epe‡en on on 🗸

Le $a \operatorname{con} a \operatorname{de}$ o e pe $a \operatorname{of} a \operatorname{c}$ ope o a a a = e e ope o off c on d eren on o n d eren on

VI.1 The Hilbert Transform

feppyo e od o eco p on of e non and d fo fo

$$-\mathcal{H}f \quad y \quad --p \qquad \frac{f}{-}d$$

e e p deno e a p nc p e -r e e p e n on of \mathcal{H} on \mathbf{V} a de ned y e coe c en

$$r_{\mathbf{L}} = - \mathcal{H} \quad d \quad \mathbf{L} \in \mathbf{Z}$$

c n n co peeyde ne o e coe c en **a** of e non **a** nd d $\mathcal{H} = \{A_{\mathbf{j}} \mid B_{\mathbf{j}} \mid \mathbf{j}\}_{\mathbf{j}} \mathbf{z} \mid A_{\mathbf{j}} = A \quad B_{\mathbf{j}} = B \quad \mathrm{nd} \quad \mathbf{j} = -\mathbf{j}$ еее

eqn 🎝 pe fo

ay≱e of pe

		Coe cients	Coe cients	
	L	I	L	I
M = 6	1	-0.588303698	9	-0.035367761
	2	-0.077576414	10	-0.031830988
	3	-0.128743695	11	-0.028937262
	4	-0.075063628	12	-0.026525823
	5	-0.064168018	13	-0.024485376
	6	-0.053041366	14	-0.022736420
	7	-0.045470650	15	-0.021220659
	8	-0.039788641	16	-0.019894368

of **e** n**f**o fo D ec e**s** e e $r_{\rm l}$ e e $r_{\rm l}$ e coe c en $r_{\rm l}$ -

, te coe c en
$$ar_{1} \in \mathbb{Z}$$
 n a fy e fo o n'a se of ne te c
eq on a

$$r_{\mathbf{I}} = r_{\mathbf{I}} = \frac{\mathbf{k}}{\mathbf{k}} \mathbf{k} + r_{\mathbf{I}} \mathbf{k} + r_{\mathbf{I}} \mathbf{k} \mathbf{k}$$

e e e coe c en \mathbf{a} k e \mathbf{f} en n e \mathbf{a} p o c \mathbf{a} of $r_{\mathbf{l}}$ fo \mathbf{f} e ante nd 7 eo n

e o $n r_1 - r_1$ nd $p r_1 - q$ e no e e coe c en r c nno e de e ned

fo eq on e nd o n' e e po c cond on e co p e e coe c en r $r_1 \neq$ ny p e e ed cc cy Example.

VI.2 The fractional derivatives

≰e ≠e fo o nⁱ de non off con de e≱

$$\mathbf{x} f \qquad \underbrace{\mathbf{z}}_{+} \qquad \underbrace{-y_{+}}_{-y_{+}} f y \, dy \qquad \qquad \boxed{7}$$

e e e con de $\not-$ f en 7 de ne af c on n de e e e p e en on of $_{\mathbf{x}}$ on \mathbf{V} a de e ned y e coe c en a

$$r_{\mathbf{L}} \stackrel{\mathbf{Z}_{+}}{-} \qquad -_{\mathbf{\chi}} \quad \mathbf{x} \qquad d \qquad \mathbf{\chi} \in \mathbf{Z}$$

poded and eas

$$i \xrightarrow{T} k k'$$

$$k k' \stackrel{T}{} i + k k'$$

$$k k' \quad k' \quad k k' \stackrel{T}{} i + k k'$$

$$k k' \quad k k' \stackrel{T}{} i + k k'$$

nd

e y o e fy e coe c en $a r_1 a$ fy e fo o n' y a e of ne le c eq on a

e e e coe c en \mathbf{k} e l'en n \mathbf{n} e \mathbf{n} nd \mathbf{r} e o n e \mathbf{r} po c \mathbf{r} o \mathbf{r} fo l'e

$$r_{\mathbf{I}} = \frac{1}{\mathbf{I}_{\mathbf{I}}} = \frac{1}{\mathbf{I}_{\mathbf{$$

Example.

		Coe cients	Coe cients	
	L	I	L	I
M = 6	-7	-2.82831017E-06	4	-2.77955293E-02
	-6	-1.68623867E-06	5	-2.61324170E-02
	-5	4.45847796E-04	6	-1.91718816E-02
	-4	-4.34633415E-03	7	-1.52272841E-02
	-3	2.28821728E-02	8	-1.24667403E-02
	-2	-8.49883759E-02	9	-1.04479500E-02
	-1	0.27799963	10	-8.92061945E-03
	0	0.84681966	11	-7.73225246E-03
	1	-0.69847577	12	-6.78614593E-03
	2	2.36400139E-02	13	-6.01838599E-03
	3	-8.97463780E-02	14	-5.38521459E-03

$M \checkmark p \lor c$ `on of ope o ``n e e `e`

VII.1 Multiplication of matrices in the standard form

The pc on of ceaof C de on Zyl nd nd pe do down ope of a new nd d for equation of O N of N ope on an dd on apoer e o con o e d of e "nle nd y e nloze o e en e en e e pod c e o e e o d of

-

 $|| \cdot - \cdot || \leq 7$ e 1 nd de of 7 do n ed y o e pefecope⁴ en e 1 o e one 1 n c n d1

VII.2 Multiplication of matrices in the non-standard form

e no o ne n lo fo e p c on of e ope o n e non nd d fo ne lo se e n e y deco pes e sen e p ocessof p c on Le nd e o ope o s

•
$$L R \rightarrow L R$$

en e non \mathbf{J} nd d fo \mathbf{J} of \mathbf{J} nd $\{A_{\mathbf{j}} \ B_{\mathbf{j}} \ \mathbf{J} \ \mathbf{J$ e co

e e

nd

$$\sum_{j=1}^{j} n_{n} n_{j} \sum_{j=1}^{j} B_{j} P_{j}$$

eope o 🎝 n e 🎝

of ope on a edec e elo o e p e e e o n e of ope on a e p popo on o Ni e e n ope o $A_j B_j$ j = n tot 49 - 410.315 ac 5 0 Td (36 su 87 12.7097 05 52

VIII.1 An iterative algorithm for computing the generalized inverse

n o de o

poced e nd e e on n e e e and e e na fo e cop on a e e pe fo ed on n p c o a on nd e ad o ne fo L N AC fo cop n e and e deco po a on . o e a e ad e fo o n f n

eet : ... N e c cy e od se o ⁴ e en e of $X_{\mathbf{k}}$ eo ⁴ e e y e o ed fe e c e on

Size $N \times N$	SVD	FWT Generalized Inverse	L_2 -Error
$\textbf{128}\times\textbf{128}$	20.27 sec.	25.89 sec.	$3 \ 1 \cdot 10^{-4}$
256 × 256	144.43 sec.	77.98 sec.	3 42 \cdot 10 $^{-4}$
512×512	1,155 sec. (est.)	242.84 sec.	$6 \ 0 \cdot 10^{-4}$
1024 × 1024	9,244 sec. (est.)	657.09 sec.	77 \cdot 10 $^{-4}$
$2^{15}\times2^{15}$	9.6 years (est.)	1 day (est.)	

Le adeze e ze e e lo andc n'n ec fncon c c a ope o c n e pe en ede c en y e a fo pædod. e en op e o a N e c e and e epe fo nce of e z lo a e epo ed zep e y

VIII.2 An iterative algorithm for computing the projection operator on the null space.

Le aconade e fo o n' e on

$$X_{\mathbf{k}+} = X_{\mathbf{k}} - X_{\mathbf{k}}$$

$$X = A A$$
 e e e d o n nd ac o e n

en $-X_{\mathbf{k}}$ con ele o $P_{\mathbf{null}}$, ac n e o ne e d ec yo y conning n n n ep e en on fo $P_{\mathbf{null}}$ — $-A AA^{\dagger}A$ e e on o cop e elene zed ne e AA^{\dagger} , ef p c on lo e e e on e f fo de c por ope o e e e cope y e lo fo elene zed ne e e ponderence o e e e doe no eq e cope y of e ne e ope o ony of e po e of e ope o

VIII.3 An iterative algorithm for computing a square root of an operator.

Le $de_{\mathcal{X}}$ en e on o contra c o $A^{=}$ nd $A^{=}$ ee A to a p c y to f d on nd non nel e de n e ope o te contra de e fo o n e on

$$I_{+} = I_{-} I_$$

VIII.4 Fast algorithms for computing the exponential, sine and cosine of a matrix

e e ponen of o nope o a e a ane nd coane f nc on a e on e a o e conade ed n ny c c a of ope o a A a n e c a of e l'ene zed n e a

X Co p $\mathcal{A}n$ F(u) in e e^{be} $\mathfrak{S}e^{\mathfrak{S}}$

n a econedeze e fa d pelo fo cop n'e e an n n e y de en efin con nd a eperned nee a An pon e pea — O ny cea alene ze eo e a Million Million , on e pop l'on of an ea of pon of non ne eqona O nec ppoc o e e ano e e e pec de ne of pp con of a lo

IX.1 The algorithm for evaluating u²

$$\mathbf{j} = P_{\mathbf{j}} \qquad \mathbf{j} \in \mathbf{V}_{\mathbf{j}}$$

node o deco pe e z e z e e "e e zopc z e z

$$- \sum_{n}^{j \times n} \sum_{j}^{n} - P_{j} = P_{j} = P_{j} = P_{j} = P_{j} = P_{j} = P_{j}$$

$$\Rightarrow n^{j} P_{j} = -P_{j} = 0 \quad n$$

$$- \sum_{n}^{j \times n} P_{j} = j$$

n e ee none con e eend e en cer nd;'; /;' . o en e c p por e need fo , o e n en e of ce of , ce Befoepoceed n'f e e aconade ne peof e n 🗗 aa e e e foo n'e p c e on a

A o e pod caon e a e a e e ze o p nd n e p c y n o P a

j k

nd ant 7 eo nfo e

$$- \frac{j \mathbf{X}^{n}}{j} = \frac{\mathbf{X}}{d_{\mathbf{k}}^{\mathbf{j}} \mathbf{k} \mathbf{k}} \qquad \frac{j \mathbf{X}^{n}}{j} = \frac{\mathbf{X}}{d_{\mathbf{k}}^{\mathbf{j}} \mathbf{k}} \qquad n = \frac{\mathbf{X}}{k} \qquad n = \frac{n}{k} \qquad$$

On deno n

еее 🤪

 $\begin{array}{cccc} \mathbf{\dot{k}} e & no & e & \text{if the coe} & \text{cient } d_k^j \text{ is zero then there is no need to keep the corresponding} \\ \mathbf{average} & \mathbf{\dot{k}} & no & e & o & d_{\bullet} & e & need & o & eep & e & l & e_{\bullet} & on, y & ne & e_{\bullet} & nl & e_{\bullet} & e \\ e & e & e & e & c & c & en & \bullet d_k^j & o & p & od & c & \bullet \mathbf{\dot{k}} d_k^j & e & \bullet \mathbf{\dot{k}} n & c & n & fo & l & en & cc & cy \\ \end{array}$

of coe c en a c need o e a o ed y e ed ced f e y o a n f fo e p e

$$M_{\mathbf{WWW}}^{\mathbf{j};\mathbf{j}'} \quad ' = \mathbf{j}' = \mathbf{j}' \quad \mathbf{j}'$$

Þ

$$M_{WWW}^{\mathbf{j};\mathbf{j}'}$$
 ' $\mathbf{j}'^{=} M_{WWW}^{\mathbf{j}}$ - ' \mathbf{j} ' $-$

Pro e e e o a în c n ed c on n e n e of coe c en a a con e q ence of e f c e coe c en a n dec y a e d a nce r = : -: : -: : :e e e n e a e a f en e of in c n coe c en d_{k}^{i} apopo on o en e of c es ol N p e en e of ope on eq ed o e e e pp n p c n c n coe c en d_{k}^{i} o p od ce non ze o con on eefo e e in c n coe c en d_{k}^{i} o p od ce non ze o con on eefo e e in c n coe c en d_{k}^{i} o p od ce non ze o con on eefo e e c en o so e on y o e k' fo c e e e e coe c en d_{k}^{i} c c $| - '| \leq$ nd e p od c $k' d_{k}^{i}$ o e e e e o d of cc cy e n e need o so e e l'eson y n e nel o ood of an es . e n e of ope on fo e p nd n of e cond e n no e e e so popo on o e n e of in c n en es nd e es e s **Remark**. e lo fo e on - n e ee so o so e e e pod c of of nc on ance $-\overline{4}$ - -

IX.2 The algorithm for evaluating F(u)

Le ennneyd. Ten efnc on node o decope e ze e e n ze "ee zopc ze ez

$$- n \xrightarrow{j \times n}_{j} P_{j} - P_{j} , \qquad 7$$

pndn efncon ne yo ze eze epon y e Pt d 77 e de p

ieno ee e no ee e cond dee of ne e no e e o edee nndnd con de nle e nde of e e e nn e o ee o n e e of M Bonye e o eo e en e o ee n n Bonye o e e ndef c o jn e o ey o eep oe eo e e e ndey oon o cepon f e e o n d n le n co p nlo epe ed pp c on of e lofo—o e ee e e e e e e e n y c d n le n con de nlnp cy nle e e c z nle

efe ence³

., B A pe p æ ep eæn on of a oo ne ope o a D eæa Y e n e a y

- C e L een d nd "o n Afadpe poe of fo p ce a on a SIAM Journal of Scientic and Statistical Computing e Y e n e a y ec n c "epo YALeB DO o" e
- \mathbf{A} A Coen D ec e da nd C.

- M "e e of feqency c nne deco pos on of les nd e e odes ec n c "epo e Con na e of M e c cences Ne Yo n e sy
- . , Y Meye Lecc zen qe ezondee eze ez ozen qd e C ^m MAD neze zD p ne
- . Y Meye nc pe d nce de 🏞 e enne e De e a d ope e a nwóți 3T