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Interpolating scaling functions give a faithful representation of a localized charge distribution by its
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In this paper we will describe a new Poisson solver for
free boundary conditions on a uniform mesh. Contrary to
Poisson solvers based on plane wave functions, our method
is using interpolating scaling functions to represent the
charge density. It is therefore from the beginning free of
long-range interactions between supercells that falsify results
if plane waves are used to describe nonperiodic systems. Due
to the convolutions we have to evaluate our method that has
an N log N scaling instead of the ideal linear scaling. Due to
its small prefactor the method is, however, most efficient
when dealing with localized densities such as those that can
be found, for example, in the context of ab initio pseudopo-
tential electronic structure calculations using finite
differences,7 finite elements,8 or plane waves for nonperiodic
systems.

II. INTERPOLATING SCALING FUNCTIONS

Scaling functions arise in wavelet theory.9 A scaling
function basis set can be obtained from all the translations by
a certain grid spacing h of the mother wavelet centered at the
origin. What distinguished scaling functions from other basis
functions with compact support such as finite elements or
Lagrange functions is the refinement relation. The refinement
relation establishes a relation between a scaling function
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accuracy. The method by Martyna and Tuckerman has a
rapid exponential convergence rate which is characteristic
for plane wave methods. Our new method has an algebraic
convergence rate of hm with respect to the grid spacing h. By
choosing very high order interpolating scaling functions, we
can get arbitrarily high convergence rates. Since convolu-
tions are performed with FFT techniques, the numerical ef-
fort does not increase as the order m is increased. The accu-
racy shown in Fig. 3 for the method of Martyna and
Tuckerman is the accuracy in the central part of the cube that
has 1/8 of the total volume of the computational cell. Out-
side this volume, errors blow up. So the main disadvantage
of this method is that a very large computational volume is
needed in order to obtain accurate results in a sufficiently
large target volume. For this reason the less accurate Hock-
ney method is generally preferred in the CPMD program.16

There is, however, a modification of the method by Yarne
et al.17 �implemented in their PINY-MD code�
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APPENDIX: PROOF OF EQ. „6…

In the present appendix, we are going to prove Eq. �6�.
Let ��x� be an interpolating scaling function of Delauriers-
Dubuc, of the order m, and �i1,i2,i3

be a three-dimensional
array of constant coefficients. Let, further,

��r� = �
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��x − i1���x − i2���x − i3� . �A1�
Then,
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This follows from the fact, proven in Ref. 19 that the
first m moments of the scaling function obey the formula

Ml =� ��x�xldx = 	l, l = 0, . . . ,m − 1. �A3�

Shift the integration variable, we have

� ��x − j�xldx =� ��t��t + j�ldt

=� ��t��
p=0

l

Cl
ptpjl−pdt = jl
Then, inserting �A1� into the right side of �A2�, we get


