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INTRODUCTION

The study of dynamical processes in networked systems is one
of the central problems in complexity science.1,2 Even simple dynam-
ical systems, when connected with each other, can produce complex
collective behavior. Examples include synchronization in coupled
oscillator networks and spreading of opinions, information, and
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Synchronization

Complex networks are one of the fundamental topics in cur-
rent research to describe many real phenomena in biology, physics,
and engineering sciences. When studying complex dynamical net-
works where the nodes represent dynamical systems, one of the most
significant phenomena is the emergence of collective states like syn-
chronization. Synchronization is the coherent dynamics that emerge
in coupled systems. Previously, different types of synchronization
states were observed using different kinds of network topologies
that can be static29 or time-varying30 in nature. In recent stud-
ies, it has been shown that including higher-order interactions is
necessary to model many real-world phenomena.18–20 In the last
few decades, many studies on synchronization of identical sys-
tems have been implemented using pairwise interaction networks
and analytically studied using the master stability function (MSF)
approach.31 Thus, one approach to analytically study synchroniza-
tion in systems with higher-order interactions involves developing
an extended version of the MSF.32 Moreover, the study of synchro-
nization in time-varying higher-order networks33 is also at an early
stage and can be tackled similarly. We refer the reader to review
articles,19,20 where many different properties of higher-order inter-
actions are discussed together with collective phenomena, including
synchronization, chimera states,34 contagion dynamics, etc.

The emergence of synchronization of coupled phase oscillators
on hypergraphs is an interesting topic. In this connection, Adhikari
et al.35 have developed a general formalism to study synchronization
of phase oscillators on hypergraphs. To illustrate it, they gener-
ated hypergraphs through two different mechanisms: the former
generates a random hypergraph where both pairwise and higher-
order interactions are constructed randomly, while the other one
generates a hypergraph with correlated links and triangles, and the
number of pairwise and triadic interactions is correlated to each
other. The authors show that for both types of hypergraphs, an
abrupt transition to synchrony with associated hysteresis emerges
under sufficiently strong triadic coupling. For the correlated hyper-
graph, the onset of abrupt synchronization and bistability depends
on the moments of the degree distribution. Furthermore, the tri-
adic coupling only affects the emergence of bistability but not the
commencement of synchrony. By reducing the system of differential
equations in terms of the structural characteristics of the hyper-
graph, they derive analytically the prerequisites for the onset of
abrupt synchronization and bistability.

The construction and emerging synchronization phenomena
in multiplex hypergraphs is another interesting topic. In mul-
tiplex networks, two types of interactions are present, namely,
intralayer interaction within network layers and interlayer inter-
actions between layers. In Ref. 36 the authors construct multiplex
hypergraph networks in which intralayer interactions are considered
to be higher-order, constructed by hypergraphs, and the interlayer
connections are pairwise interaction between nodes of different lay-
ers. As in previous studies of synchronization in multiplex network
structures, only pairwise interactions between the units in the lay-
ers are considered. In this network, two types of synchronization
phenomena in the multiplex hypergraph emerge: intralayer and
interlayer synchronization. Compared to the pairwise multiplex net-
works, where the intralayer connections are described by graphs,

Anwar and Ghosh36 unveil a significant improvement in intralayer
synchrony for multiplex hypergraphs. Nevertheless, the underlying
behavior of interlayer synchronization remains almost the same in
both scenarios. Furthermore, the enhancement in intralayer syn-
chrony is analytically supported by calculating the spectral gap of
Laplacian matrices corresponding to the multiplex hypergraph and
pairwise multiplex network. They also illustrated that the inter-
layer synchrony in multiplex hypergraphs is more robust to random
removal of interlayer links when compared with pairwise multiplex
networks.

In another study, Parastesh et al.37
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introduces a balanced Hodge Laplacian in which the strength of
higher- and lower-order interactions can be tuned and optimized
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that the existence of such a strategy depends on the probability that
the interactions are pairwise. Furthermore, the authors propose and
study an agent-based model where agents interact in pairs (“duels”)
or triples (“truels”) and find good agreement with their mean-field
predictions.

The persistence of biodiversity in the presence of competitive
species interactions is an important problem in ecology. The possi-
bility that higher-order interactions contribute to preserve biodiver-
sity is explored in the paper by Chatterjee et al.56 In this paper, the
authors study a simple model for the dynamics of species densities
that includes higher-order interactions. They find that their model
leads to species co-existence and diversity. In addition, the authors
study how perturbations to the interaction strengths between species
can eventually lead to various effects in the density of all the species
in the system. Interestingly, the authors find that small perturbations
can lead to the formation of synchronized clusters.

Finally, the article by Schlager et al
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