$$\eta_k = [DF(\) - g\lambda_k DH(\)]\eta_k. \tag{-}$$

 $\eta_{k} \qquad \qquad k \qquad \qquad G$ $\begin{bmatrix}
k & & & & \\
& & & & \\
& & & & \\
& & & & \\
\end{bmatrix}, \quad \begin{bmatrix}
k & & & & \\
& & & & \\
& & & & \\
\end{bmatrix}, \quad \begin{bmatrix}
\alpha & & & \\
& & & \\
& & & \\
\end{bmatrix}, \quad \begin{bmatrix}
\alpha & & & \\
& & & \\
& & & \\
\end{bmatrix}, \quad \begin{bmatrix}
\alpha & & & \\
& & & \\
& & & \\
\end{bmatrix}, \quad \begin{bmatrix}
\alpha & & & \\
& & & \\
& & & \\
\end{bmatrix}, \quad \begin{bmatrix}
\alpha & & & \\
& & & \\
& & & \\
\end{bmatrix}, \quad \begin{bmatrix}
\alpha & & & \\
& & & \\
\end{bmatrix}, \quad \begin{bmatrix}
\alpha & & & \\
& & & \\
\end{bmatrix}, \quad \begin{bmatrix}
\alpha & & & \\
& & & \\
\end{bmatrix}, \quad \begin{bmatrix}
\alpha & & & \\
& & & \\
\end{bmatrix}, \quad \begin{bmatrix}
\alpha & & & \\
& & & \\
\end{bmatrix}, \quad \begin{bmatrix}
\alpha & & & \\
& & & \\
\end{bmatrix}, \quad \begin{bmatrix}
\alpha & & & \\
& & & \\
\end{bmatrix}, \quad \begin{bmatrix}
\alpha & & & \\
& & & \\
\end{bmatrix}, \quad \begin{bmatrix}
\alpha & & & \\
& & & \\
\end{bmatrix}, \quad \begin{bmatrix}
\alpha & & & \\
& & & \\
\end{bmatrix}, \quad \begin{bmatrix}
\alpha & & & \\
& & & \\
\end{bmatrix}, \quad \begin{bmatrix}
\alpha & & & \\
& & & \\
\end{bmatrix}, \quad \begin{bmatrix}
\alpha & & & \\
& & & \\
\end{bmatrix}, \quad \begin{bmatrix}
\alpha & & & \\
& & & \\
\end{bmatrix}, \quad \begin{bmatrix}
\alpha & & & \\
& & & \\
\end{bmatrix}, \quad \begin{bmatrix}
\alpha & & & \\
& & & \\
\end{bmatrix}, \quad \begin{bmatrix}
\alpha & & & \\
& & & \\
\end{bmatrix}, \quad \begin{bmatrix}
\alpha & & & \\
& & & \\
\end{bmatrix}, \quad \begin{bmatrix}
\alpha & & & \\
& & & \\
\end{bmatrix}, \quad \begin{bmatrix}
\alpha & & & \\
& & & \\
\end{bmatrix}, \quad \begin{bmatrix}
\alpha & & & \\
& & & \\
\end{bmatrix}, \quad \begin{bmatrix}
\alpha & & & \\
& & & \\
\end{bmatrix}, \quad \begin{bmatrix}
\alpha & & & \\
& & & \\
\end{bmatrix}, \quad \begin{bmatrix}
\alpha & & & \\
& & & \\
\end{bmatrix}, \quad \begin{bmatrix}
\alpha & & & \\
& & & \\
\end{bmatrix}, \quad \begin{bmatrix}
\alpha & & & \\
& & & \\
\end{bmatrix}, \quad \begin{bmatrix}
\alpha & & & \\
& & & \\
\end{bmatrix}, \quad \begin{bmatrix}
\alpha & & & \\
& & & \\
\end{bmatrix}, \quad \begin{bmatrix}
\alpha & & & \\
& & & \\
\end{bmatrix}, \quad \begin{bmatrix}
\alpha & & & \\
& & & \\
\end{bmatrix}, \quad \begin{bmatrix}
\alpha & & & \\
& & & \\
\end{bmatrix}, \quad \begin{bmatrix}
\alpha & & & \\
& & & \\
\end{bmatrix}, \quad \begin{bmatrix}
\alpha & & & \\
& & & \\
\end{bmatrix}, \quad \begin{bmatrix}
\alpha & & & \\
& & & \\
\end{bmatrix}, \quad \begin{bmatrix}
\alpha & & & \\
& & & \\
\end{bmatrix}, \quad \begin{bmatrix}
\alpha & & & \\
& & & \\
\end{bmatrix}, \quad \begin{bmatrix}
\alpha & & & \\
& & & \\
\end{bmatrix}, \quad \begin{bmatrix}
\alpha & & & \\
& & & \\
\end{bmatrix}, \quad \begin{bmatrix}
\alpha & & & \\
& & & \\
\end{bmatrix}, \quad \begin{bmatrix}
\alpha & & & \\
& & & \\
\end{bmatrix}, \quad \begin{bmatrix}
\alpha & & & \\
& & & \\
\end{bmatrix}, \quad \begin{bmatrix}
\alpha & & & \\
& & & \\
\end{bmatrix}, \quad \begin{bmatrix}
\alpha & & & \\
& & & \\
\end{bmatrix}, \quad \begin{bmatrix}
\alpha & & & \\
& & & \\
\end{bmatrix}, \quad \begin{bmatrix}
\alpha & & & \\
& & & \\
\end{bmatrix}, \quad \begin{bmatrix}
\alpha & & & \\
& & & \\
\end{bmatrix}, \quad \begin{bmatrix}
\alpha & & & \\
& & & \\
\end{bmatrix}, \quad \begin{bmatrix}
\alpha & & & \\
& & & \\
\end{bmatrix}, \quad \begin{bmatrix}
\alpha & & & \\
& & & \\
\end{bmatrix}, \quad \begin{bmatrix}
\alpha & & & \\
& & & \\
\end{bmatrix}, \quad \begin{bmatrix}
\alpha & & & \\
& & & \\
\end{bmatrix}, \quad \begin{bmatrix}
\alpha & & & \\
& & & \\
\end{bmatrix}, \quad \begin{bmatrix}
\alpha & & & \\
\end{bmatrix}, \quad \begin{bmatrix}
\alpha & & & \\
& & & \\
\end{bmatrix}, \quad \begin{bmatrix}
\alpha & & & \\
\end{bmatrix}, \quad \begin{bmatrix}
\alpha & & & \\
& & & \\
\end{bmatrix}, \quad \begin{bmatrix}
\alpha & & &$

$$\eta = [DF(\) - \alpha DH(\)]\eta. \tag{)}$$

()

= 0. + x(. - .).

$$G = \begin{pmatrix} b_1 & -a_1 & 0 & 0 & \cdots & 0 & -a_N \\ -a_1 & b & -a & 0 & \cdots & 0 & 0 \\ 0 & -a & b & -a & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ -a_N & 0 & 0 & 0 & 0 & -a_{N-1} & b_N \end{pmatrix},$$

$$b_i = (a_{i-1} + a_i)$$
 $i = 1, ...$

[