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I Introduction

Seismic data compression (as it exists today) is a version of transform coding which involves
three main steps:

1. The transform step, which is accomplished by a fast wavelet, wavelet-packet or local
cosine transform;

2. The quantization step, which is typically accomplished by a scalar uniform or non-uniform
quantization scheme, and

3. The encoding step, which is accomplished by entropy coding such as Hu�man coding or
adaptive arithmetic coding.

Let us briey outline the role of each step. The role of the transform step is to decorrelate the
data. Namely, the transform will take a data set with a more or less at histogram and produce
a data set which has just a few large values and a very high number of near zero or zero values.
In short, this step prepares the data for quantization. It has been observed that a much better
compression is achieved by quantizing the decorrelated data than the original data.

There are several transforms that can be used for decorrelation. For example, the
Karhunen-Loeve transform achieves decorrelation but at a very high computational cost. It
turns out that the wavelet, wavelet-packet or local cosine transforms can be used instead. These
transforms are fast and provide a local time-scale (or time-frequency) data representation,
resulting in a relatively few large coe�cients and a large number of small coe�cients.

At the second step the coe�cients of transformed data are quantized, i.e., mapped to
a discrete



A distortion criterion (implied by the size of the seismic gather or ensemble of gathers
and the target compression ratio) is minimized subject to the bit budget. In some cases a
non-uniform quantization can yield lower distortion level than the uniform quantization.

We note that some new quantization/coding schemes which have been used for image
compression may not be directly applicable to seismic data. For example, embedded zero-
wavelet tree compression (EZW) scheme [13] does not appear e�cient since seismic data violate
the basic assumptions of EZW algorithm.

After quantization we are likely to have a number of repeated quantized coe�cients and,
thus, a signi�cant redundancy. The third step, entropy coding, addresses this issue. Perhaps
the easiest analogy to entropy coding comes from the Morse code communication, in which
frequently encountered symbols are transmitted with shorter codes, while rarely encountered
symbols are transmitted with longer codes. The entropy coding creates a new data set which has
the average number of bits/sample minimized. There are two distinct cases of entropy coding.
In the case of stationary data one can use Hu�man coding. In the case of non-stationary data
adaptive arithmetic coding is usually applied.

Now that we have an overall picture, we will desribe individual steps in greater detail.
The notions that are considered below are not yet a familiar territory for a geophysicist and,
for that reason, our goal will be limited to providing a basic trail map. We will consider the
basic steps in the reverse order so that it is clear (at least intuitively) what is desirable to have
as an output of the preceding step.



The Hu�man algorithm (Hu�man coding) [7] constructs an optimal pre�x tree and the
corresponding code so that

H(X) � RX � H(X) + 1:

The di�culty in obtaining the lower bound via Hu�man coding is that it requires





for j = 0; : : : ; n � 1 and k = 0; : : : ; 2n−j−1 � 1. It is easy to see that evaluating the whole set
of coe�cients dj

k, s
j
k in (5.5), (5.6) requires 2(N � 1) additions and 2N multiplications.

In two dimensions, there are two natural ways to construct the Haar basis. The
�rst is simply the tensor product



Let us consider a multiresolution analysis for L
2(R) and let f (x � k





Computing via (5.28) and (5.29) is illustrated by the pyramid scheme
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The reconstruction of a function from its wavelet representation is also an order N
procedure and is described by
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Computing via (5.31) is illustrated by the pyramid scheme
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Figure 1: Distortion Curve: wavelet vs. local cosine transform for land data

Figure 2: Land data: original, compressed by the factor of
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