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While considerable progress has been made in the analysis of large systems containing a single type

of coupled dynamical component (e.g., coupled oscillators or coupled switches), systems containing

diverse components (e.g., both oscillators and switches) have received much less attention. We

analyze large, hybrid systems of interconnected Kuramoto oscillators and Hopfield switches with

positive feedback. In this system, oscillator synchronization promotes switches to turn on. In turn,

when switches turn on, they enhance the synchrony of the oscillators to which they are coupled.

Depending on the choice of parameters, we find theoretically coexisting stable solutions with either

(i) incoherent oscillators and all switches permanently off, (ii) synchronized oscillators and all

switches permanently on, or (iii) synchronized oscillators and switches that periodically alternate

between the on and off states. Numerical experiments confirm these predictions. We discuss how

transitions between these steady state solutions can be onset deterministically through dynamic

bifurcations or spontaneously due to finite-size fluctuations. VC 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4822017]

Although extensive theoretical progress has been made in

understanding collective behavior in large systems con-

taining a single type of component (such as a switch1 or

oscillator2), there has been less development for diverse

systems containing more than one type of component.

However, many complex systems are composed of various

types of units.
3–9

For example, the system-wide dynamics

of the yeast cell cycle may be modeled as a system of

coupled switches and oscillators.8,9 Extending the numeri-

cal work of Ref. 9, we study interconnected Hopfield

switches10 and Kuramoto oscillators11 with positive feed-

back. We find three steady state solutions that may coex-

ist: (i) the Incoherent-Off (I-Off) state in which the

oscillators are incoherent and all switches are perma-

nently off, (ii) the Synchronized-On (S-On) state in which

the oscillators synchronize and all switches remain on,

and (iii) the Synchronized-Periodic (S-P) state in which

the oscillators synchronize and the switches periodically

turn on and off. Numerical experiments confirm our pre-

dictions for these steady state solutions and the transitions

between them. Our model demonstrates how the interplay

between different units can result in rich dynamics.

I. INTRODUCTION

The interdisciplinary nature of modern scientific research

has demonstrated the pervasive need of theory for complex

systems1,2 and complex networks.12 Of particular interest are

large systems involving interconnected components, such as

interacting neurons, genes, or people, which are responsible

for outcomes in the larger system that they compose.

Significant advances have been made for complex systems

containing a single type of component. For example, models

of synchronization of oscillators have been used to study col-

lective phenomena in physics (e.g., pedestrian bridges,13

Josephson junction circuits,14 and lasers15), social behavior

(e.g., flashing of fireflies,16 animal flocking,17 and audiences

clapping18), and physiology (e.g., circadian rhythms19 and

chemical oscillators11). Similarly, interacting switches have

been used to investigate gene expression,1 neural processing,10

electronic circuits,20 and chemical reactions.21 In spite of these

advances, the investigation of systems with diversity remains

an open topic at the forefront of complex systems research.3–9

Recently, a model was developed to study hybrid sys-

tems composed of coupled switches and oscillators.9 The

hybrid model recapitulated the system-wide dynamics of the

yeast cell cycle, while demonstrating that small perturbations
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that, in addition to deterministic transitions between states

due to slow parameter changes, there are stochastic transi-

tions between states mediated by finite-size fluctuations.

The remainder of this paper is organized as follows: In

Sec. II, we introduce our model, discuss the parameter ranges

of interest, and provide an overview of the dynamics to be

studied. In Sec. III, we analyze three types of steady state

solutions: an Incoherent-Off state (Sec. III A), a

Synchronized-On state (Sec. III B), and a Synchronized-

Periodic state (Sec. III C). These results are validated by nu-

merical experimentation in Sec. IV, where we explore transi-

tions between steady state solutions (Sec. IV A) and

investigate the relaxation of assumptions made in our analy-

sis (Sec. IV B). Conclusions are drawn in Sec. V.

II. MODEL

As an initial step toward analyzing hybrid models, we

consider networks with all-to-all interactions, where each os-

cillator (or switch) is coupled to all other oscillators and

switches, as illustrated in Fig. 1. The effect of network topol-

ogy on hybrid systems will be explored in future research.

To further facilitate our exploration, we focus our attention

on interactions between Kuramoto phase oscillators11 and

Hopfield switches,10 which respectively represent paradig-

matic models for coupled oscillators and switches.

Beginning with the Kuramoto phase oscillators,11 each

oscillator n ¼ 1; 2;…;N is identically coupled to all the

others by

_hn ¼ xn þ
k

N

XN

l¼1

sinðhl � hnÞ; (1)

where hnðtÞ represents the phase of oscillator n at time t; xn

is oscillator n’s intrinsic frequency randomly chosen from a

distribution XðxÞ, and kðtÞ is the strength of coupling, which

adapts to allow the switches to influence the oscillators.

Recently, there has been much interest in adaptive dynamics

of parameters in Eq. (1), including models that allow adapta-

tion of the oscillator frequencies,22 coupling strength,23,24 or

network structure.25

We next consider a system of M uniformly coupled

Hopfield switches.10 In this model, without coupling to

oscillators, each switch m ¼ 1; 2;…;M has in internal pa-

rameter xm that evolves as

_xm ¼ �xm � gþ Kx

M

XM

l¼1

~xl; (2)

where Kx represents the strength of interaction between

switches and ~xm corresponds to an external variable through

which switch m can interact with other switches. While the

internal variables fxmg are allowed to evolve continuously,

the external variables f~xmg are defined piecewise based on

the internal variables and may be taken to represent a

highly sensitive variable. For each switch m, we have that

~xm ¼ 1 ð~xm ¼ 0Þ for
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hl 2 ½0; p� and 0 for hl 62 ½0; p�. The new term, sinðhl � bmÞ,
has the same qualitative effect while being analytically trac-

table and preserving the continuity of the original Kuramoto

model.11 Second, whereas Eqs. (5)–(7) allow switches to

affect oscillators through an adaptive coupling constant k,

the hybrid model of Ref. 9 implements this interconnectivity

instead by allowing the oscillators’ intrinsic frequencies to

adapt. We highlight this difference by offering the following

interpretation for the effect of switches turning off on the

oscillators: Whereas switches turning off under Eqs. (5)–(7)

may be interpreted as removing the coupling between oscil-

lators, the turning off of switches in the hybrid model of

Ref. 9 causes oscillators’ phases to freeze, in effect removing

their “oscillatory” property. Therefore, although an impor-

tant advantage of the present model is analytical tractability,

it is expected that both models will be relevant for various

applications. The appropriate model should be selected, for

example, based upon the physical structure of the network

components.6,7 Despite these differences, we find many simi-

larities between the models’ dynamics and thus the previous

numerical experiments9 will help guide our analysis.

A. Parameter choices

The free parameters in Eqs. (5)–(7) are the distributions

XðxÞ and BðbÞ as well as the variables K; Kx; Kh; s, and g.

We will focus on the case in which all oscillator-oscillator

interactions are attractive, requiring s;K > 0. Moreover,

oscillators following Eq. (1) are well known to begin to syn-

chronize when the coupling strength k > 0 is larger than

some critical value K0 >



we assume g > 0 and N !1. In this solution, oscillators

evolve independently of each other and their phases are

given by hnðtÞ ¼ xntþ hnð0Þ.
In Fig. 2(a), we show a simulation that approaches this

steady state solution, where a system with N ¼ M ¼ 1000

oscillators and switches is initialized with kð0Þ ¼ 4, random

values fhng chosen such that rhð0Þ � 0:6, and random values

fxmg such that rxð0Þ � 0 and the set fxmð0Þg centered at �1.

As time increases, rx remains at 0 for all time t, each xm decays

to �g, and both rh and k decay to 0. From Eq. (7), one can see

that the decay of k



C. The synchronized-periodic state

We now analyze steady state solutions in which the oscil-

lators synchronize and each switch m periodically fluctuates

between the on (~xm ¼ 1) and off (~xm ¼ 0) states. Our analysis

assumes that both N and M are large and that the adaptation in

coupling strength is slow compared to the oscillator and

switch dynamics, s� maxf1;x�1
0 g. This separation of time-

scales will allow us to simultaneously consider the steady

state behavior of the dynamics of switches and oscillator

phases, which evolve at the fast time scale [i.e., Eqs. (5)–(6)

while assuming that k is approximately constant], as well the

dynamics of coupling adaptation, which evolves at the slow

time scale [i.e., Eq. (7) while assuming the fast dynamics

approximately remain in a steady state]. The relaxation of this

large s assumption is numerically studied in Sec. IV B 2.

The nature of the S-P state strongly depends on the distri-

bution of phase lags BðbÞ. Therefore, in this section, we study

the limiting cases in which either (1) the distribution of phase

lags is uniform, BðbÞ ¼ ð2pÞ�1
, or (2) all the phase lags are

identical, bm ¼ b for all m. In Sec. IV B 1, we find that the

results for more general unimodal phase lag distributions

behave as an interpolation between the results for these two

cases.

1. Uniformly distributed phase lags

We now study the steady state solution for the situation

in which the phase lags fbmg are uniformly distributed in

½�p; p� (i.e., BðbÞ ¼ ð2pÞ�1
for b 2 ½�p; p� and 0 other-

wise), which is the most heterogeneous distribution of phase

lags. We begin our analysis by assuming that the system is in

the S-P state, the coupling strength adaptation is slow,

s� maxf1;x�1
0 g, and the system size is large, N;M!1.

Motivated by our results from Sec. III B, we look for a solu-

tion in which rx and rh are time independent.

Letting rx be constant, Eq. (7) has an equilibrium value

of k ¼ Krx. It follows that the order parameter rh is given by

Eq. (9) with k ¼ Krx



properties. These regions are labeled fA;B; C;Dg and their

descriptions are summarized in Table I.

In Fig. 3(b), we show the ðKx; gÞ phase space depicting

these stability regions for variable switch thresholds, g, and

switch-switch coupling strength, Kx. The parameter values

used to make Fig. 3(a) are shown by a vertical black line la-

beled a. Note that the critical values Kx
2 (blue dot-dashed line)

and Kx
3 (red solid line) merge at a critical value g	. For larger

g values, there is no stable branch rðsÞx and thus no S-P state.

In Fig. 3(c), we plot the critical threshold value g	 as a

function of the switch-oscillator coupling strength Kh, which

may be numerically obtained by simultaneously solving

F ¼ 0; dF=drx ¼ 0, and d2F=dr2
x ¼ 0 for ðrx



In Fig. 4(c), we provide a bifurcation diagram summa-

rizing the stability regions for variable switch-switch cou-

pling strength, Kx, and switch thresholds, g. Note that for

g > g	 (the value at which Kx
2 and Kx

3 merge), there is no sta-

ble solution hrxi and hence no S-P state. The vertical black

lines labeled a and b, respectively, indicate the g and Kx val-

ues shown in Figs. 4(a) and 4(b).

In summary, although the temporal dynamics of the sta-

ble S-P states differ greatly for switches with uniformly dis-

tributed phase lags and identical phase lags (e.g., rx either is

constant or periodically fluctuates), the underlying state

space is very similar [e.g., compare Fig. 3(b) with Fig. 4(c)].

In both cases, a stable S-P state only exists for a regime in

which the parameters of the three terms describing the dy-

namics of the internal switch variables fxmg (i.e., g; Kx, and

Kh) are chosen such that no single term dominates Eq. (5).

IV. NUMERICAL INVESTIGATIONS

Having introduced our hybrid model, the steady states of

interest, and our analysis, we now illustrate our results and

numerically explore further dynamics. In Sec. IV A
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rb ! 0. We hypothesize that if BðbÞ is unimodal, then the

S-P state solution can be qualitatively described by an inter-

polation between these two limiting cases. For example, if

we vary rb from 1 to 0, we expect the trajectory rxðtÞ and

its time averaged value hrxi to smoothly evolve from the ana-

lytic prediction for rb ¼ 1 (Sec. III C 1) to the analytic pre-

diction for rb ¼ 0 (Sec. III C 2).

This conjecture is illustrated for a choice of parameters in

Fig. 7 where we plot observed rxðtÞ trajectories [Fig. 7(a)] and

the time-average hrxi as a function of Kx for rb 2 f0; 1; 10g
[Fig. 7(b)]. In this figure, we plot the results from simulations

with Kh ¼ 10; K ¼ 6; Kx
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similar phase-space if s is not too small. Here, we plot

observed values of hrxi (symbols) for the S-P state versus

Kx for several values of s. Whereas our separation of time-

scales analysis discussed in Sec. III C 2 (curved line) accu-

rately predicts the observed values for s ¼ 10, as s
decreases, the hrxi values appear to only shift slightly to

the right, preserving the underlying topology. Therefore,

if s is not too small (e.g., no S-P state was observed for

s ¼ 0:



APPENDIX: THE S-P STATE FOR IDENTICAL PHASE
LAGS

In this Appendix, we provide analysis for the S-P state

of our hybrid system, Eqs. (5)–(7), for switches with iden-

tical phase lags bm ¼ b for all m. As discussed in Sec.

III C 2, for large system size N;M!1 and slow coupling
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