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Blinking Rolls: Chaotic Advection in a Three-Dimensional Flow with an Invariant∗
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Abstract. We study a simple, nonautonomous, three-dimensional, incompressible flow corresponding to sequen-
tially active two-dimensional rolls with distinct axes. A feature of the model is that an analytical map
is obtained. We show that when the roll axes are orthogonal, motion is confined to two-dimensional
topological spheres. The dynamics on each surface ranges from nearly regular to largely chaotic.
We study the transport and mixing on each surface and their dependence upon parameters in the
system.
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Eulerian velocity fields. Although the ABC flow is probably not physically observable, the
crucial idea is that mixing can occur even in the simplest of flows in three dimensions [36].
In the two-dimensional case, transport can also be achieved in laminar, time-dependent flows.
One of the seminal models was developed by Aref, who coined the term “chaotic advection”
[1]. His flow, called the “blinking vortex,” is specifically designed to yield nonintegrable La-
grangian trajectories. This model can be interpreted as an idealized mixing protocol where
passive tracers are successively captured by the velocity fields of vortical stirrers that are the
analogues of turbulent eddies with finite lifetimes.

In sections 2 and 3, we generalize the blinking vortex model and construct a physically
motivated, yet mathematically simple, system with three-dimensional mixing. Our model,
which we call “blinking rolls,” replaces Aref’s alternatively active vortices with alternatively
active arrays of rolls aligned in different directions.

Though our mixing protocol is idealized, there is experimental evidence for the existence
of similar flows. One such example is observed in Rayleigh–Bénard convection experiments
for a binary mixture in a square cell with insulating sides. When the vertical temperature
difference exceeds a threshold value, an instability leads to a sequence of temporally alter-
nating, orthogonal convection rolls whose axes are parallel to the square boundaries [34]. It
is observed that “the transition from one set of rolls to the other is very fast, followed by a
relatively long period of domination by one of the rolls . . . the system lies most of the time
in the roll patterns.” Another example of roll-switching is the Küppers–Lortz instability for
rotating convection in a pure fluid [28, 9, 43, 22, 42]. Rotation causes an instability that
results in switching of the roll axes by roughly 60◦. Theoretical and experimental studies
have shown that the rolls switch with a characteristic frequency proportional to the relative
temperature difference above threshold.

When the switching occurs much faster than the roll turnover time, it can be idealized as
instantaneous. In this case, the flow can be viewed as a composition of maps corresponding
to the action of each individual roll. For the incompressible case, this gives a composition
of volume-preserving maps. Transport in volume-preserving maps was studied in pioneering
work on a discretized ABC system [37, 15, 12, 11]. The onset of transport is closely related to
the destruction of heteroclinic connections for codimension-one manifolds [38, 29]; a Melnikov
method was developed to study the bifurcations in manifold crossings in [30, 31].

It is generally difficult to find models for three-dimensional flows that both are math-
ematically accessible and have effective transport. However, there is a small but growing
link between mixing in experimental, three-dimensional flows and theoretical modeling based
on chaotic advection. Shinbrot and his collaborators have studied the transient behavior of
weakly buoyant tracers in a laminar flow within a cylindrical batch stirring device using a
traveling wave map with a buoyancy term [40
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model. In section 2 the flow for a single roll is constructed and the equations of motion are
solved to obtain an analytical time-t map. In section 3 the flow with roll-switching is modeled
by composing several of these maps. For the case that the roll axes are orthogonal, there
is an invariant that constrains the motion to two-dimensional surfaces. In fact, we show in
section 4 that the invariant persists regardless of the choice of stirring protocol. This system
has a number of symmetries that simplify its analysis; see section 5. In section 6, we use
normal form expansions to understand behavior near a fixed point and near roll boundaries.
Numerical results are given in section 7.

2. Blinking rolls. Aref’s blinking vortex flow corresponds to a two-dimensional, inviscid,
incompressible fluid in a circular domain of radius a [1]. A point vortex moves inside the
bounding contour according to a stirring protocol (x(t), y(t)). The equations for a passive
scalar in such a fluid are Hamiltonian, and if the vortex position is constant in either a fixed
or a steadily rotating coordinate system, then the flow is integrable. Otherwise, the flow is
typically nonintegrable.

The blinking vortex corresponds to a stirring protocol with period T . For the first half of
the period, a vortex resides at (b, 0), and for the remainder of the period a vortex resides at
(−b, 0) for some b < a. For simplicity it is assumed that there is an instantaneous transition
between the flows associated with the finite-lifetime point vortices. This allows the equations of
motion for each half period to be solved exactly, giving rise to the half period maps F1(x, y) and
F2(x, y). The Lagrangian tracer dynamics is then governed by the full period map f = F2 ◦F1.

Two-dimensional transport can then be studied simply by iterating the map. The dynam-
ics are governed by two dimensionless parameters µ = ΓT

2πa2 , representing the vortex strength,

and β = b
a
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This gives the velocity field

(ẋ, ẏ, ż) = ∇ψ(y, z) × êx = (0, −A cos(y) sin(z), A sin(y) cos(z)).(3)

For this case, the line (y, z) = (0, 0) is a roll axis (as are the axes (mπ, nπ) for m, n ∈ Z);
nearby orbits lie on topological circles enclosing x-axis; see Figure 1. These circles limit on
a square as y and z approach ±π

2 . The line (y, z) = (π
2 , π

2 ) and its translations by (mπ, nπ)
correspond to saddle equilibria. Indeed the square cylinder boundary of the set {|y|, |z| ≤ π

2 }
consists of the stable and unstable manifolds of the saddles, and it bounds the roll surrounding
the x-axis by heteroclinic connections. If A > 0, the direction of rotation for this roll is right-
handed or positive. If we translate by π in a single direction, the direction of rotation becomes
left-handed or negative.



BLINKING ROLLS 163

dependence, giving the general velocity field

v(x, t) = A(t)∇ψ1 × ê1 + B(t)∇ψ2 × êe
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functions [10] to obtain the flow

Φt

⎛
⎝ x

y
z

⎞
⎠ =

⎛
⎝ x

sin−1(ksn(At − M(y, z), k))
sin−1(ksn(At + N(y, z), k))
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4. Existence of an invariant. Our numerical investigations for blinking orthogonal roll
arrays indicate that three-dimensional mixing does not occur (see section 7). Indeed, these
investigations led to the discovery that the flow has an invariant for this case. This was
unexpected since invariants are not common for volume-preserving flows and mappings that
have no apparent symmetries (though some special examples have been constructed in [20]).
As we see here, the flow of (4) does have a symmetry, although it is not immediately obvious.

Indeed, there is an invariant for the case of three rolls if we choose the stream functions
to have the separable forms

ψ1 = g(y)h(z), ψ2 = f(x)h(z), ψ3 = f(x)g(y).(10)

In this case it is easy to see that for arbitrary amplitude functions A(t), B(t), and C(t) (i.e.,
arbitrary stirring protocol), the function

J = f(x)g(y)h(z)(11)

is an invariant for the flow. To see this in a pedestrian way, one need only show that

dJ

dt
= ∇J(x) · v(x, t) = 0,(12)

as is easy to demonstrate using (4).
More generally, if ∇J �= 0, then (12) implies that there exists a vector field
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Figure 3. Three level sets of the invariant (14). The gaps in the outer surface are used to illustrate the
concentric structure of the level sets.

5. Symmetries. The trigonometric roll (3) is periodic with period 2π and is odd under
translation by π in y or z. This implies that the fundamental cube for the three-dimensional
flow (4) is divided into eight cells with alternating rotation directions; the case that all Ti > 0
is shown in Figure 4. The ± signs in the figure indicate the directions of right- (left-) handed
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We denote the map in the new coordinates u = (u, ū, w) by F , so that DF(0) = Λ. Expand
F in a power series expansion of the form

F(u) = Λ(u + F (k)(u) + F (k+1)(u) + · · · ),

where F (k) is a term that is homogeneous of degree k > 1 in the variables u, i.e.,

F (k) =
∑

m+n+p=k

am,n,pum ūn wp ,(18)

with m, n, p ∈ Z+, and complex coefficients am,n,p. Since the original map is real, ū is the
complex conjugate of u, and thus ām,n,p = an,m.p.

The normal form for F is a “simpler” map G that is conjugate to F ,

G(h(u)) = h(F(u)),(19)

by a near identity transformation h. As usual we expand the conjugacy h and the new map
in power series and at each order use h to remove as many terms in G as possible. At order
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As demonstrated in section 5, the map (6) has reflection symmetry through the origin. In
this case, the normal form will exhibit the same symmetry, and therefore all even order terms
drop out of the expansion so that

α2n,2p+1 = β2n,2p+1 = 0.

In addition, if F is volume-preserving, then we can choose h so that it also preserves volume,
and therefore the normal form will as well:

du′ ∧ dū′ ∧ dw′ = du ∧ dū ∧ dw.

This places restrictions on the coefficients of (21). To cubic order, we find

β2,0 = −4Re(α2,0), β0,2 = −2

3
Re(α0,2).(22)

Now, we can analyze basic phenomena of the normal form. Letting u = ρe2πiθ, we can
rewrite (21) to obtain the real map

ρ′ = ρ

(
1 − 1

4
β2,0ρ2 − 3

2
β0,2w2 + O(3)

)
,

θ′ = θ + ω + Im(α2,0)ρ
2 + Im(α0,2)w

2 + O(3),

w′ = w(1 + β2,0ρ2 + β0,2w2 + O(3)).

Thus the origin is a nonhyperbolic fixed point. To all orders, the w-axis (ρ = 0) and the
equatorial plane w = 0 are invariant. The plane w = 0 is locally an (un)stable manifold of the
origin when β2,0 > 0 (< 0), and the w-axis is locally (un)stable when β0,2 < 0 (> 0). There

are additional unstable manifolds along the lines ρ = sw when s2 = −2
β0,2

β2,0
> 0, and these are

(un)stable manifolds when β0,2 > 0(< 0). An example is shown in Figure 5.

ρ

w

θ

Figure 5. Dynamics of the normal form in the (ρ, w)-plane for β2,0 > 0 and β0,2 < 0.

Note that when there is an invariant whose surfaces are topological spheres about the
origin (as is the case for (6)), none of the invariant axes can be attracting or repelling. Thus
the only normal form that corresponds to this case is one in which every resonant coefficient
has real part zero. Thus the normal form for (6) with irrational ω fixes ρ and w, and every
orbit near the origin lies on an invariant circle. As we will see, this corresponds well with the
numerical observations of the dynamics of (6) in section 7.
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6.2. Motion on the boundary cube. The single roll flow (9) preserves the boundaries of
the fundamental cube; the surfaces where x, y, or z are ±π

2 . Recall from section 2 that the
line (y, z) = (π

2 , π
2 ) and its translations by (mπ, nπ) consist of saddle equilibria of ΦT . The

four faces corresponding to the set {(y, z) : |y| = π
2 or |z| = π

2 } correspond to their stable and
unstable manifolds.

On these faces, the velocity field (3) has only one component, and its flow simplifies since
there the modulus k → 1, and sn(T, 1) = tanh(T ), and cn(T, 1) = dn(T, 1) = sech(T ). In this
case (9) becomes

ΦT (x, y, z) =

⎧⎪⎪⎨
⎪⎪⎩

(
x, y, sin−1

(
cosh(T ) sin(z)±sinh(T )
cosh(T )±sin(z) sinh(T )

))
if y = ±π

2 ,

(
x, sin−1

(
cosh(T ) sin(y)∓sinh(T )
cosh(T )∓sin(y) sinh(T )

)
, z

)
if z = ±π

2 .

(23)

This formula for T = T1 gives the boundary map corresponding to F1; we denote it as B1.
The maps B2 and B3 are obtained from (23) by permuting the variables appropriately.

It is convenient to use a spherical projection to display the dynamics of the system.
Letting (θ, η) denote the longitude and colatitude, respectively, we can project the cube onto
the sphere. Then the dynamics can be displayed on the rectangle −π < θ ≤ π, 0 ≤ η ≤ π. For
example, in Figure 6 we show F1 and F3 in this projection. In this figure, the twelve edges of
the cube project to the red curves. The faces x = ±π

2 are pierced in the center by the points
(θ, η) = (0, π

2 ) and (θ, η) = (π, π
2 ), respectively. The faces defined by z = ±π

2 correspond to
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intersections of the red curves in Figure 6. The edges of the cube now comprise parts of the
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-1 0 1
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0

1
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1

<T3

T1 =T3

T1 >T3 T1 >T3>

l+ l-

Figure 7. Fixed points of F1 ◦ B3 at x = π
2
. Here l+ = B3(l−) and the colored curves are images of l+

under F1.

7. Numerical explorations. In this section we will explore some of the dynamics (6). For
simplicity, we set T2 = 0 so that the second roll is not active, giving the system

F = F1 ◦ F3.(25)

As we showed in section 5, it is sufficient to consider to T1 > T3 > 0.
First we discuss the techniques that we will use to visualize the orbits of (25). We

take advantage of the fact that orbits are constrained to surfaces of constant J(x, y, z) =
cos(x) cos(y) cos(z), and that for each 0 < J ≤ 1 these surfaces are convex, topological
spheres; recall Figure 3. Therefore, as we did in section 6.2 for the maps on the boundary, we
can use spherical coordinates to obtain a two-dimensional projection of the dynamics. Letting
(θ, η) be the spherical angles, any point (x, y, z) corresponds to a point (J, θ, η), and since J
is invariant, we can view the dynamics in the angle plane. The coordinate transformation is
thus

(J, θ, η) = V (x, y, z) =

(
cos(x) cos(y) cos(z), tan−1

(y

x

)
, tan−1

(√
x2 + y2

z

))
,(26)

which has the Jacobian

det(DV ) = J
x tan x + y tan y + z tan z√

x2 + y2(x2 + y2 + z2)
.(27)

To visualize the dynamics on the (θ, η)-plane for a given invariant value, we will iterate a grid
of initial conditions. For each (θ, η), we first determine the radius, r, using the Newton method
on J(r sin η cos θ, r sin η sin θ, r
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radius and plot (θ, η) along the orbit. To view the dynamics in the entire cube, we choose a
grid in J (from 1 to 0) and concatenate the figures to create the animations 60672 01.avi and
60672 02.avi. The animations reveal a system rich in complex, chaotic behavior.

Recall that when a map has an invariant, fixed points generically come in one-parameter
families labeled by the invariant value [20]. Suppose that O = {xt, t = 0, . . . , n − 1} is a
periodic orbit of period n. Differentiating the equation J(F n(x)) = J(x) at the point x0 gives

(DF n(x0))
T · ∇J(x0) = ∇J(x0).(28)

Thus when ∇J(x0) �= 0 (as is true on all invariant surfaces except the origin and the funda-
mental cube), this vector is a left eigenvector of the Jacobian with unit multiplier. Since F
is volume-preserving, this implies that the multipliers of O are (1, λ, 1

λ). When λ �= 1, the
implicit function theorem can be used to show there is a curve of fixed points of F n parame-
terized by J through x0. When λ �= ±1, the periodic orbit is elliptic on the invariant surface if
λ is on the unit circle and hyperbolic when λ is real. The orbit generically undergoes q-tupling
bifurcations when λ passes through the value e2πiω with ω = p/q rational. These bifurcations
correspond to the creation of new periodic orbits of period nq; these new orbits are also found
in one-parameter families parameterized by J .

To compute some of the low period orbits we use Broyden’s method [16]. For the fixed
points, we allowed the initial guess for Broyden’s method to range over the entire invariant
surface, so that we had a good chance of finding all of them. However, to limit the complexity
of the figures, we decided only to search for periodic points born at the q-tupling bifurcations
of the fixed points. An analytic expression for the Jacobian can be computed to determine
the stability of the periodic points.

The analysis of fixed and periodic points gives us the ability to understand the fine struc-
ture of the system. It also illuminates any barriers to global transport on each invariant. For
instance, the existence of large islands surrounding stable periodic points inhibits the trans-
port of passive scalars. On the other hand, the existence of hyperbolic periodic points should
aid transport due to the likelihood of homoclinic and heteroclinic tangles in their manifolds.

One measure of the degree of chaos in a system are its Lyapunov exponents. Since F is
volume-preserving, the sum of its three exponents must be zero, and because the orbits are
restricted to two-dimensional surfaces, one of the exponents must be exactly equal to zero.
This implies that the remaining two exponents are equal in magnitude and opposite in sign.
We use the iterative QR method to compute the exponents [21]. Along an orbit O, define

Q(n+1) R(n+1) = DF (xn) Q(n) R(n),

where Q(0) = R(0) = id. As usual Q is orthogonal and R is upper triangular. To compute
the exponents, we require that Rii > 0; it is not hard to show that one can modify the QR
method so that this is the case. Moreover, since F is orientation-preserving and det(R) > 0,
then Q ∈ SO(3). Thus we can represent Q with three angles, θi (for example, Euler angles or
rotations about three orthogonal axes). Since

R(n+1) (R(n))−1 = (Q(n+1))T DF (xn) Q(n)

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60672_01.avi
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60672_02.avi
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is upper triangular, this requirement can be manipulated to provide a formula for updating
the angles θi iteratively. After n steps, the ith Lyapunov exponent is approximately

λ
(n)
i
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of the orbits lie on invariant circles, as suggested by the normal form analysis in section 6.1.
The apparent change in topology of the circles in the figure is due only to nonalignment of
the spherical projection with the rotation axis. Note that the reflection symmetry through
the origin implies that the northern and southern hemispheres have conjugate dynamics.

Figure 8. Projection of the dynamics of (25) onto the (θ, η)-plane for T1 = 7, T3 = 5, on the invariant
surface J = 0.973962.

There is a curve of fixed points tangent to the v3-axis at the origin; this gives rise to a pair
of fixed points on each invariant surface, and for these parameter values there are no other
fixed points. We focus on the fixed point in the northern hemisphere—by symmetry the other
fixed point has the same behavior. In Figure 9, we plot the multipliers (1



http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60672_01.avi
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Figure 10. Tripling and doubling bifurcations of a fixed point for T1 = 7, T3 = 5. The fixed point is
shown as the blue circle, the green diamond and purple square correspond to stable and unstable period-three
orbits, and the red diamond and yellow square are stable and unstable period-two orbits. The four panels at
the left correspond to the following: (a) J = 0.625940, just after the first subcritical pitchfork bifurcation. (For
resolution in our figures, the full phase plane is not shown. Hence one stable period-three point is omitted. Two
additional unstable period-three points are shown (bottom left, bottom right) which are part of another unstable
period-three orbit.) (b) J = 0.618429, just before tripling bifurcation. (c) J = 0.600902. (d) J = 0.578368 after
the tripling. The right panels correspond to (e) J = 0.465699 and (f) J = 0.450677, just before and after the
first supercritical doubling, and (c) J = 0.445669 and (d) J = 0.428143, after the second subcritical doubling
and pitchfork bifurcations.

Figure 11. Phase plane and the Lyapunov exponent for J = 0.262895. Points in the phase plane (upper
panel) correspond to periodic orbits; colors are the same as in Figure

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60672_01.avi
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of the phase portrait are indicated on the figure. The scaled average Lyapunov exponent
remains nearly zero as J decreases from 1, until near J = 0.8, when 〈λ〉

T suddenly begins to
increase. This suggests that the asymptotic validity of the normal form breaks down near
this point and corresponds with the appearance of small zones of chaotic behavior. At the
quadrupling and tripling bifurcations, 〈λ〉

T reaches local maxima, and two local minima are
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almost immediately.

7.2. Example 2: T1 + T3 = 6. In this section we fix the total time to T1 + T3 = 6, half
of the previous value. We will first consider the case T1

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60672_02.avi
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Figure 15. Dynamics for T1 = 3.5, T3 = 2.5. The left panels correspond to J = 0.282925 and the right to
J = 0.030045. Clicking on the above images displays the associated movie (60672 02.avi).

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60672_02.avi
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60672_02.avi
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anomalous diffusion theory [24, 27, 26, 25]. In a construction analogous to the Küppers–Lortz
phenomenon, roll arrays rotating by 60◦ also display three-dimensional mixing. We will report
on these topics in a future paper.
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