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Abstract. This paper describes exact and explicit representations of the di�erential operators,
dn/dxn, n = 1, 2, · · ·, in orthonormal bases of compactly supported wavelets as well as the rep-
resentations of the Hilbert transform and fractional derivatives. The method of computing these
representations is directly applicable to multidimensional convolution operators.

Also, sparse representations of shift operators in orthonormal bases of compactly supported
wavelets are discussed and a fast algorithm requiring O(N log N) operations for computing the
wavelet coe�cients of all N circulant shifts of a vector of the length N = 2n is constructed. As
an example of an application of this algorithm, it is shown that the storage requirements of the fast
algorithm for applying the standard form of a pseudodi�erential operator to a vector (see [G. Beylkin,
R. R. Coifman, and V. Rokhlin, Comm. Pure. Appl. Math., 44 (1991), pp. 141{183]) may be reduced
from O(N) to O(log2 N) signi�cant entries.

Key words. wavelets, di�erential operators, Hilbert transform, fractional derivatives, pseudo-
di�erential operators, shift operators, numerical algorithms
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1. Introduction. In [1] Daubechies introduced compactly supported wavelets
which proved to be very useful in numerical analysis [2]. In this paper we find exact

and explicit representations of several basic operators (derivatives, Hilbert transform,
shifts, etc.) in orthonormal bases of compactly supported wavelets. We also present
an O(N logN) algorithm for computing the wavelet coefficients of all N circulant
shifts of a vector of the length N = 2n.

Throughout this paper we only compute the nonstandard forms of operators since
it is a simple matter to obtain a standard form from the nonstandard form [2]. Meyer
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Second, we compute the nonstandard form of the shift operator. This operator
is important in practical applications of wavelets because the wavelet coefficients are
not shift invariant. Since the nonstandard and standard forms of this operator are
sparse and easy to compute, knowing these representations “compensates” for the
lack of shift invariance. The wavelet expansion of shifts of vectors or of matrices may
be obtained by applying the shift operator directly to the coefficients of the original
expansion. The coefficients for the shift operators may be stored in advance and used
as needed.

It is clear, however, that the particular manner in which sparseness of the shift
operator may be exploited depends on the application and may be less straightforward
than is indicated above. We present an example of such an application in numerical
analysis. Observing that there are only N log2N distinct wavelet coefficients in the
decomposition of all N circulant shifts of a vector of the length N = 2n, we construct
an O(N logN) algorithm for computing all of these coefficients. Using this algorithm,
we show that the storage requirements of the fast algorithm for applying the standard
form of a pseudodifferential operator to a vector [2] may be reduced from O(N logN)
to O(log2N) significant entries.

2. Compactly supported wavelets. In this section, we briefly review the or-
thonormal bases of compactly supported wavelets and set our notation. For the details
we refer to [1].

The orthonormal basis of compactly supported wavelets of L2(R) is formed by
the dilation and translation of a single function  (x),

 j,k(x) = 2−j/2 (2−jx� k);(2.1)

where j; k 2 Z. The function  (x) has a companion, the scaling function ’(x), and
these functions satisfy the following relations:

’(x) =
p

2
L−1
X

k=0

hk’(2x� k);(2.2)

 (x) =
p

2

L−1
X

k=0

gk’(2x� k);(2.3)

where

gk = (�1)khL−k−1; k = 0; � � � ; L� 1;(2.4)

and

Z +∞

−∞

’(x)dx = 1:(2.5)

In addition, the function  has M vanishing moments

Z +∞

−∞

 (x)xmdx = 0; m = 0; � � � ;M � 1:(2.6)
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where

P (y) =

k=M−1
X

k=0

 

M � 1 + k

k

!

yk;(2.15)

and R is an odd polynomial such that

0 � P (y) + yMR( 1

2
� y) for 0 � y � 1;(2.16)

and

sup
0≤y≤1

�

P (y) + yMR( 1

2
� y)

�

< 22(M−1):(2.17)

3. The operator d=dx in wavelet bases. In this section we construct the
nonstandard form of the operator d=dx. The nonstandard form [2] is a representation
of an operator T as a chain of triplets

T = fAj ; Bj ;Γjgj∈Z(3.1)

acting on the subspaces Vj and Wj ,

Aj : Wj ! Wj ;(3.2)

Bj : Vj ! Wj ;(3.3)

Γj : Wj ! Vj :(3.4)

The operators fAj ; Bj ;Γjgj∈Z are defined as Aj = QjTQj, Bj = QjTPj , and Γj =
PjTQj , where Pj is the projection operator on the subspace Vj and Qj = Pj−1 � Pj

is the projection operator on the subspace Wj .

The matrix elements �j
il, �

j
il, 

j
il of Aj , Bj , Γj , and rj

il of Tj = PjTPj , i; l; j 2 Z,
for the operator d=dx
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�
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To prove this assertion we compute jm0(�)j2 using (2.11) and obtain

jm0(�)j2 =
1

2
+

1

2

L−1
X

n=1

an cosn�;(3.21)

where an are given in (3.19). Computing jm0(� + �)j2; we have

jm0(� + �)j2 =
1

2
� 1

2

L/2
X

k=1

a2k−1 cos(2k � 1)� +
1

2

L/2−1
X

k=1

a2k cos 2k�:(3.22)

Combining (3.21) and (3.22) to satisfy (2.12), we obtain

L/2−1
X

k=1

a2k cos 2k� = 0;(3.23)

and hence, (3.20) and (3.18). (See also Remark 6 about vanishing moments of a2k−1.)
We prove the following:
Proposition 1.
(1) If the integr ;
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Setting � = 0 in (3.43), we obtain r̂(0) = 2r̂(0) and thus, (3.35).
Uniqueness of the solution of (3.24) and (3.25) follows from the uniqueness of

the representation of d=dx. Given the solution rl of (3.24) and (3.25)
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4. M = 5.

a1 =
19845
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Proposition 2.
(1) If the integrals in (4.1) or (4.2) exist, then the coefficients r

(n)
l ; l 2 Z satisfy

the following system of linear algebraic equations:

r
(n)
l = 2n

2

4r2l +
1

2

L/2
X

k=1

a2k−1(r
(n)
2l−2k+1 + r

(n)
2l+2k−1)

3

5 ;(4.3)

and

X

l

ln r
(n)
l = (�1)n n!;(4.4)

where a2k−1 are given in (3.19).
(2) Let M � (n + 1)=2; where M is the number of vanishing moments in (2.6).

If the integrals in (4.1) or (4.2) exist; then the equations (4.3) and (4.4) have

a unique solution with a finite number of nonzero coefficients r
(n)
l ; namely;

r
(n)
l 6= 0 for �L+ 2 � l � L� 2; such that for even n

r
(n)
l = r

(n)
−l ;(4.5)

X

l

l2ñ r
(n)
l = 0; ñ = 1; � � � ; n=2 � 1;(4.6)

and

X

l

r
(n)
l = 0;(4.7)

and for odd n

r
(n)
l = �r(n)

−l ;(4.8)

X

l

l2ñ−1 r
(n)
l = 0; ñ = 1; � � � ; (n� 1)=2:(4.9)

The proof of Proposition 2 is completely analogous to that of Proposition 1.
Remark 3. The linear system in Proposition 2 may have a unique solution

whereas integrals (4.1) and (4.2) are not absolutely convergent. A case in point
is the Daubechies’ wavelet with M = 2. The representation of the first derivative in
this basis is described in the previous section. Equations (4.3) and (4.4) do not have
a solution for the second derivative n = 2. However, the system of equations (4.3)
and (4.4) has a solution for the third derivative n = 3. We have

a1 =
9

8
; a3 = �1

8
;

and

r−2 = �1

2
; r−1 = 1; r0 = 0; r1 = �1; r2 =

1

2
:
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The set of coefficients (�1=2; 1; 0;�1; 1=2) is one of the standard choices of finite
difference coefficients for the third derivative.

We note that among the wavelets with L = 4, the wavelets with two vanishing
momentsM = 2 do not have the best Hölder exponent (see [6]), but the representation
of the third derivative exists only if the number of vanishing moments M = 2.

Remark 4. Let us derive an equation generalizing to (3.43) for dn=dxn directly
from (4.2). We rewrite (4.2) as

r
(n)
l =

Z 2π

0

X

k∈Z

j’̂(� + 2�k)j2 (�i)n (� + 2�k)ne−ilξ d�:(4.10)

Therefore,

r̂(�) =
X

k∈Z

j’̂(� + 2�k)j2 (�i)n (� + 2�k)n;(4.11)

where

r̂(�) =
X

l

r
(n)
l eilξ :(4.12)

Substituting the relation

’̂(�) = m0(�=2)’̂(�=2)(4.13)

into the right-hand side of (4.11), and summing separately over even and odd indices
in (4.11), we arrive at

r̂(�) = 2n( jm0(�=2)j2 r̂(�=2) + jm0(�=2) + �)j2 r̂(�=2) + �)):(4.14)

By considering the operator M0 defined on 2�-periodic functions,

(M0f)(�) = jm0(�=2)j2 f(�=2) + jm0(�=2) + �)j2 f(�=2) + �);(4.15)

we rewrite (4.14) as

M0r̂ = 2−nr̂:(4.16)

Thus, r̂ is an eigenvector of the operator M0 corresponding to the eigenvalue 2−n and,
therefore, finding the representation of the derivatives in the wavelet basis is equivalent
to finding trigonometric polynomial solutions of (4.16) and vice versa. (The operator
M0 is also introduced in [7] and [8], where the problem (4.16) with eigenvalue 1 is
considered.)

Remark 5. While theoretically it is well understood that the derivative operators
(or, more generally, operators with homogeneous symbols) have an explicit diagonal
preconditioner in wavelet bases, the numerical evidence illustrating this fact is of
interest, since it represents one of the advantages of computing in the wavelet bases.

If an operator has a null space (the actual null space or a null space for a given ac-
curacy), then by the condition number we understand the ratio of the largest singular
value to the smallest singular value above the threshold of accuracy. Thus, we include
the situation where the operator may be preconditioned only on a subspace. We note
that the preconditioning described here addresses the problem of ill conditioning due
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only to the unfavorable homogeneity of the symbol and does not affect ill conditioning
due to other causes.

For periodized derivative operators the bound on the condition number depends
only on the particular choice of the wavelet basis. After applying such a precondi-
tioner, the condition number �p of the operator is uniformly bounded with respect
to the size of the matrix. We recall that the condition number controls the rate of
convergence of a number of iterative algorithms; for example, the number of iterations
of the conjugate gradient method is O(

p
�p). Thus, this remark implies a completely

new outlook on a number of numerical methods, a topic we will address elsewhere.
We present here two tables illustrating such preconditioning applied to the stan-

dard form of the second derivative (see [2] on how to compute the standard form from
the nonstandard form). In the following examples the standard form of the periodized
second derivative D2 of size N �N , where N = 2n, is preconditioned by the diagonal
matrix P ,

Dp
2 = PD2P

where Pil = �il2
j , 1 � j � n, and where j is chosen depending on i; l so that

N �N=2j−1 + 1 � i; l � N �N=2j, and PNN = 2n.
T
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Table 3

Condition numbers of the matrix of periodized second derivative (with and without preconditioning
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Using (5.8) and the identity ’̂(�) = ’̂(�=2)m0(�=2) (see [1]), it is clear that (5.7) holds
provided that

��

1

i
@ξ

�m

jm0(�)j2
�

ξ=0

= 0 for 1 � m � 2M � 1;(5.9)

or (due to (2.12))
��

1

i
@ξ

�m

jm0(� + �)j2
�

ξ=0

= 0 for 0 � m � 2M � 1:(5.10)

But formula (5.10) follows from the explicit representation in (2.13).
Remark 6. Equations (5.9) and (3.21) also imply that even moments of the

coefficients a2k−1 from (3.19) vanish, namely,

k=L/2
X

k=1

a2k−1(2k � 1)2m = 0 for 1 � m � M � 1:(5.11)

Since the moments of the function Φ vanish equation (5.4) leads to a one-point
quadrature formula for computing the representation of convolution operators on
the finest scale. This formula is obtained in exactly the same manner as for the
special choice of the wavelet basis described in [2, eqns. (3.8)–(3.12)], where the shifted
moments of the function ’ vanish; we refer to this paper for the details.

Here we introduce a different approach for computing representations of convo-
lution operators in the wavelet basis which consists of solving the system of linear
algebraic equations (5.2) subject to asymptotic conditions. This method is especially
simple if the symbol of the operator is homogeneous of some degree since in this
case the operator is completely defined by its representation on V0. We consider
two examples of such operators, the Hilbert transform and the operator of fractional
differentiation (or antidifferentiation).

The Hilbert transform. We apply our method to the computation of the
nonstandard form of the Hilbert transform

g(x) = (Hf)(y) =
1

�
p.v.

Z ∞

−∞

f(s)

s� x
ds;(5.12)

where p.v. denotes a principal value at s = x.
The representation of H on V0 is defined by the coefficients

rl =

Z ∞

−∞

’(x � l) (H’)(x) dx; l 2 Z;(5.13)

which, in turn, completely define all other coefficients of the nonstandard form.
Namely, H = fAj ; Bj ;Γjgj∈Z, Aj = A0, Bj = B0, and Γj = Γ0, where matrix
elements �i−l, �i−l, and i−l of A0, B0, and Γ0 are computed from the coefficients
rl,

�i =

L−1
X

k=0

L−1
X

k0=0

gk gk0 r2i+k−k0 ;(5.14)

�i =

L−1
X

k=0

L−1
X

k0=0

gk hk0 r2i+k−k0 ;(5.15)
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and

i =

L−1
X

k=0

L−1
X

k0=0

hk gk0 r2i+k−k0 :(5.16)

The coefficients rl, l 2 Z in (5.13) satisfy the following system of linear algebraic
equations:

rl = r2l +
1

2

L/2
X

k=1

a2k−1(r2l−2k+1 + r2l+2k−1);(5.17)

where the coefficients a2k−1 are given in (3.19). Using (5.4), (5.6), and (5.7), we
obtain the asymptotics of rl for large l,

rl = � 1

�l
+O

�

1

l2M

�

:(5.18)

By rewriting (5.13) in terms of ’̂(�),

rl = �2

Z ∞

0

j’̂(�)j2 sin(l�) d�:(5.19)

we obtain rl = �r−l and set r0 = 0. We note that the coefficient r0 cannot be
determined from equations (5.17) and (5.18).

Solving (5.17) with the asymptotic condition (5.18), we compute the coefficients
rl, l 6= 0 with any prescribed accuracy. We note that the generalization for computing
the coefficients of Riesz transforms in higher dimensions is straightforward.

Example. We compute (see Table 4) the coefficients rl of the Hilbert transform for
Daubechies’ wavelets with six vanishing moments with 44.5Γ10velets ard.

Examp70 T� ),e of v 0.e
e0 1and 6

0

eq9j
20.6297 0 Td
e

fromfr314.8745 0 Td-19 9.941  Td
(ˆ)T4
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Table 5

The coe�cients {rl}l, l = −7, · · · , 14 of the fractional derivative α = 0.5 for Daubechies’ wavelet

with six vanishing moments.

Coe�cients Coe�cients

l rl l rl

M = 6 -7 -2.82831017E-06 4 -2.77955293E-02

-6 -1.68623867E-06 5 -2.61324170E-02

-5 4.45847796E-04 6 -1.91718816E-02

-4 -4.34633415E-03 7 -1.52272841E-02

-3 2.28821728E-02 8 -1.24667403E-02

-2 -8.49883759E-02 9 -1.04479500E-02

-1 0.27799963 10 -8.92061945E-03

0 0.84681966 11 -7.73225246E-03

1 -0.69847577 12 -6.78614593E-03

2 2.36400139E-02 13 -6.01838599E-03

3 -8.97463780E-02 14 -5.38521459E-03

6. Shift operator on V0 and fast wavelet decomposition of all circulant

shifts of a vector. Let us consider a shift by one on the subspace V0 represented
by the matrix

t
(0)
i−j = �i−j,1;(6.1)

where � is the Kronecker symbol. Using (5.1) with the an of (3.19) we have

t
(0)
l = �l,1; t

(1)
l = 1

2a|2l−1|; � � � :(6.2)

The only nonzero coefficients t
(j)
l on each scale j are those with indices �L+ 2 � l �

L � 2. Also, t
(j)
l ! �l,0 as j ! 1. As an example, the following Table 6 contains

the coefficients t
(j)
l , j = 1; 2; � � � ; 8, for the shift operator in Daubechies’ wavelet basis

with three vanishing moments.
We note that the shift by an integer other than one is treated similarly. However,

if the absolute value of the shift is greater than L� 2, then, on the first several scales

j, there are nonzero coefficients t
(j)
l with l outside the interval jlj � L � 2. As j

increases, all the nonzero coefficients t
(j)
l will have indices in the interval jlj � L� 1.

The importance of the shift operator stems
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Table 6

The coe�cients {t
(j)
l

}l=L−2
l=−L+2

for Daubechies’ wavelet with three vanishing moments, where L = 6
and j = 1, · · · , 8.

Coe�cients Coe�cients

l t
(j)
l

l t
(j)
l

j = 1 -4 0. j = 5 -4 -8.3516169979703E-06

-3 0. -3 -4.0407157939626E-04

-2 1.171875E-02 -2 4.1333660119562E-03

-1 -9.765625E-02 -1 -2.1698923046642E-02

0 0.5859375 0 0.99752855458064

1 0.5859375 1 2.4860978555807E-02

2 -9.765625E-02 2 -4.9328931709169E-03

3 1.171875E-02 3 5.0836550508393E-04

4 0. 4 1.2974760466022E-05

j = 2 -4 0. j = 6 -4 -4.7352138210499E-06

-3 -1.1444091796875E-03 -3 -2.1482413927743E-04

-2 1.6403198242188E-02 -2 2.1652627381741E-03

-1 -1.0258483886719E-01 -1 -1.1239479930566E-02

0 0.87089538574219 0 0.99937113652686

1 0.26206970214844 1 1.2046257104714E-02

2 -5.1498413085938E-02 2 -2.3712690179423E-03

3 5.7220458984375E-03 3 2.4169452359502E-04

4 1.3732910156250E-04 4 5.9574082627023E-06

j = 3 -4 -1.3411045074463E-05 j = 7 -4 -2.5174703821573E-06

-3 -1.0904073715210E-03 -3 -1.1073373558501E-04

-2 1.2418627738953E-02 -2 1.1081638044863E-03

-1 -6.9901347160339E-02 -1 -5.7198034904338E-03

0 0.96389651298523 0 0.99984123346637

1 0.11541545391083 1 5.9237906308573E-03

2 -2.3304820060730E-02 2 -1.1605296576369E-03

3 2.5123357772827E-03 3 1.1756409462604E-04

4 6.7055225372314E-05 4 2.8323576983791E-06
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j = 4 -4 -1.2778211385012E-05 j = 8 -4 -1.2976609638869E-06

-3 -7.1267131716013E-04 -3 -5.6215105787797E-05

-2 7.5265066698194E-03 -2 5.6059346249153E-04

-1 -4.0419702418149E-02 -1 -2.8852840759448E-03

0 0.99042607471347 0 0.99996009015421

1 5.2607019431889E-02 1 2.9366035254748E-03

2 -1.0551069863141E-02 2 -5.7380655655486E-04

3 1.1071795597672E-03 3 5.7938552839535E-05

4 2.9441434890032E-05 4 1.3777042338989E-06

operator allows us to “move” pictures in the “compressed” form. The coefficients

t
(j)
l for the shift operators can be stored in advance and used as needed. It is clear,

however, that the method of using sparseness of the shift operator depends on the
specific application and may be less straightforward than is indicated above.

The following is an example of an application where, instead of computing shift
operators, we compute all possible shifts. We describe a fast algorithm for the wavelet
decomposition of all circulant shifts of a vector and then show how it may be used to
reduce storage requirements of one of the algorithms of [2].

We recall that the decomposition of a vector of length N = 2n into a wavelet
basis requires O(N) operations. Since the coefficients are not shift invariant, theis
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as follows: let sj−1
k , k = 1; � � � ; 2n−j be one of the vectors of averages on the previous

scale j � 1 and compute

sj
k(0) =

n=L−1
X

n=0

hns
j−1
n+2k−1;(6.6)

sj
k(1) =

n=L−1
X

n=0

hns
j−1
n+2k;(6.7)

and

dj
k(0) =

n=L−1
X

n=0

gns
j−1
n+2k−1;(6.8)

dj
k(1) =

n=L−1
X

n=0

gns
j−1
n+2k:(6.9)

To compute the sum in (6.7) and (6.9), we shift by one the sequence sj−1
k in (6.6)

and (6.8).
Thus, stepping from scale to scale we double the number of vectors of averages

and of differences and, at the same time, halve the length of each of them. Therefore,
the total number of operations in this computation is O(N logN).

Let us organize the vectors of differences and averages as follows: on the first
scale, j = 1, we set

v1 = (d1
k(0); d1

k(1))(6.10)

and

u1 = (s1k(0); s1k(1));(6.11)

where d1
k(0), d1

k(1), s1k(0), and s1k(1) are computed from s0k according to (6.6)–(6.9).
On the second scale, j = 2, we set

v2 = (d2
k(00); d
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next scale for both s1k(0) and s1k(1), we again obtain all possible coefficients for odd
and even shifts which we collect in v2 and u2, etc.

While the vectors v1; v2; � � � ; vn contain all the coefficients, these coefficients are
not organized sequentially. In order to access them, we generate two tables iloc(is; j)
and ib(is; j) in O(N logN) operations as follows. For each shift is, 0 � is � N � 1 of
the vector s0k; k = 1; 2; � � � ; N , let us write the binary expansion of is,

is =
l=n−1
X

l=0

�l2
l;(6.14)

where �l = 0; 1. For a fixed scale j, 1 � j � n, we compute

iloc(is; j) =

l=j−1
X

l=0

�l2
l;(6.15)

and

ib(is; j) =

l=j
X

l=n−1

�l2
l;(6.16)

where ib(is; j) = 0 if j = n. The number ib(is; j) points to the begining of the subvec-
tor of differences in vj . Namely, the subvector of vj has indices between ib(is; j) + 1
and ib(is; j)+2n−j . Within this subvector (which is treated as a periodic vector with
the period 2n−j) the number iloc(is; j) points to the first element.

For all scales j, 1 � j � n, and shifts is, 0 � is � N�1, we compute two tables in
(6.15) and (6.16). These tables give us the direct access to the coefficients in vectors
v1; v2; � � � ; vn for a constant cost per element.

We now briefly describe one of the applications of the algorithm for the fast
wavelet decomposition of all circulant shifts of a vector in numerical analysis. The al-
gorithms of [2] are designed to evaluate the Calderon–Zygmund or a pseudodifferential
operator T with kernel K(x; y),

g(x) =

Z +∞

−∞

K(x; y) f(y) dy(6.17)

by constructing (for any fixed accuracy) its sparse nonstandard or standard form and
thereby, reducing the cost of applying it to a function.

Let us rewrite (6.17) as

g(x) =

Z +∞

−∞

K(x; x� z) f(x� z) dz:(6.18)

If the operator T is a convolution, then K(x; x � z) = K(z) is a function of z
only. The nonstandard form of a convolution requires at most O(logN) of stor-
age (see the previous section), while the standard form of [2] will contain O(N) or
O(N logN) significant entries even for a convolution. Alternatively, the standard form
of K(x; x� z) = K(z) in variables x and z for the convolution operators contains no
more than O(logN) significant entries for any fixed accuracy, since the kernel depends
on one variable only.
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If we now construct the standard form of K(x; x�z) in variables x and z for pseu-
dodifferential operators (not necessarily convolutions), we obtain “super”-compression
of the operator. Indeed, if these operators are represented in the form (6.18), then
the dependence of the kernel K(x; �) on x is smooth and the number of significant
entries in the standard form is of O(log2N).

The apparent difficulty in computing via (6.18) is that it is necessary to com-
pute the wavelet decomposition of f(x� z) for every x and thus, it appears to require
O(N2) operations. The algorithm of this section accomplishes this task in O(N log th9-e(of)Tj
12.1099 041.2tial


