
Wave Motion 41 (2005) 263–291
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Abstract

We develop a two-dimensional solver for the acoustic wave equation with spatially varying coefficients. In what is a new
approach, we use a basis of approximate prolate spheroidal wavefunctions and construct derivative operators that incorporate
boundary and interface conditions. Writing the wave equation as a first-order system, we evolve the equation in time using the
matrix exponential. Computation of the matrix exponential requires efficient representation of operators in two dimensions and for
this purpose we use short sums of one-dimensional operators. We also use a partitioned low-rank representation in one dimension
to further speed up the algorithm. We demonstrate that the method significantly reduces numerical dispersion and computational
time when compared with a fourth-order finite difference scheme in space and an explicit fourth-order Runge–Kutta solver in time.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we demonstrate how to use bases for bandlimited functions in algorithms of wave propagation. Using
bandlimited functions allows us to achieve a low sampling rate while significantly reducing numerical dispersion.
In addition, we show how to compute and use the matrix exponential as a propagator by employing separated and
partitioned low rank representations.

Using bases for bandlimited functions is a significant departure from the usual approach in numerical analysis.
For example, the standard notion of the order of approximation is not appropriate in its usual form since in our
construction the basis itself is generated for a finite but arbitrary accuracy. We note that the methods we describe in
this paper are applicable to many other problems.
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The first step in constructing a numerical scheme is to select a basis for representing solutions and operators.
Typically, in spectral and pseudo-spectral methods, the trigonometric functions{eikπx}N

k=0 have been used for
periodic, and Legendre and/or Chebyshev polynomials for non-periodic problems. Instead, we consider bandlimited
functions on an interval. A basis for bandlimited functions, the prolate spheroidal wave functions (PSWFs), was
introduced in the 1960s by Slepian et al. in a series of papers[1–5]. Recently the generalized Gaussian quadratures
became available in[6,7], making it possible to construct efficient numerical algorithms for such functions.

We review the construction of three bases for bandlimited functions. First we consider bases{eicθkx}N
k=1 on

the interval [−1,1], where|θk| < 1 are the nodes of the generalized Gaussian quadrature constructed for a given
precision and bandlimit. We note that these functions are not necessarily periodic. Such bases may not be suitable
for some numerical computations (heuristically, they correspond to the basis of monomials). For this reason, we
also consider bases of approximate PSWFs and interpolating bases and use them in our computations.

There are at least two deficiencies of orthogonal polynomials in using them for numerical computations. First
is the concentration of Gaussian nodes near the end points of the interval. Second is the sampling rate that never
approaches, even asymptotically, the rate for periodic functions, namely,π versus two points per wavelength, see
e.g. [8]. As it turns out, the nodes of the generalized Gaussian quadratures for exponentials do not concentrate
excessively (the rate reported in[6] is in error, seeSection 2.2) and the sampling rate asymptotically approaches
the rate for periodic functions.

In recent preprints[9,10] the authors present a study of the PSWFs as a tool for solving PDEs. We note that
our use of the PSWFs differs in several ways that have a significant impact on the performance. We first select the
desired accuracy and then, for a given bandlimit, construct the (nearly) optimal quadratures for these parameters.
Alternatively, for a selected accuracy and a given number of nodes, we find the largest possible bandlimit (see
discussion inSection 2.2). We note that in[9,10] the number of nodes is selected proportional to the bandlimit,
which is not the optimal choice. We also use a different approach to time evolution described below.

An important observation in using the PSWFs is that the norm of the derivative matrix based on bandlimited
functions is smaller than that based on polynomials. In constructing derivative operators we incorporate boundary
conditions into the derivative matrix. In the case of discontinuous interface conditions, these conditions are also
incorporated into the derivative matrix in a way similar to[11]. We also use the spectral projector to remove spurious
large eigenvalues and corresponding eigenspaces from the derivative operators, thus further reducing their norm.
For time evolution we use a semigroup approach (that involves computing the matrix exponential) and compare it
with the standard fourth-order Runge–Kutta method. We note that for time evolution one can also use the approach
introduced in[12] or the spectral method in[13]. We will discuss approaches that avoid computing the matrix
exponential explicitly elsewhere.

We write the acoustic equation as a first order system[14]. After discretizing the spatial operator, the equation
takes the form of the system of linear first order ordinary differential equations:

ut = Lu+ F(t)

with the initial conditionu(0) = u0. In the case of time independent coefficients, the solution is given by

u(t) = etL u0 +
∫ t

0
e(t−τ)L F(τ) dτ. (1)

Using(1) for time evolution requires computing the matrix exponential e
tL for a time step
t. The computation
of e
tL and applying it to a function is costly in dimensions 2 and higher and, therefore, this approach is rarely used
for numerical computations.

We use the separated representation introduced in[15] to represent the operatorL for problems in two or higher
dimensions. This representation significantly reduces the cost of computing the matrix exponential and matrix–
vector multiplications. The separated representation of an operator in two or higher dimensions is given by a sum
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of products of operators acting in one dimension. We refer to the number of terms in the separated representation
as the separation rank. The separation rank for the matrix exponential e
tL grows with the size of the time step
t,
and we will see that a time step between one and two temporal periods is appropriate to control both the separation
rank and the number of time steps. We note a typical time step in problems of wave propagation is a fraction of a
temporal period.

We reduce the computational cost further by using the partitioned low-rank (PLR) representation for operators
acting in one dimension. This representation is similar to the partitioned singular value decomposition considered
in [16,17]. We note that both the separated and PLR representations are interesting on their own, with applications
in other areas, e.g., computational quantum mechanics (see[15,18]).

We note that in[19,13] the authors present a spectral method for applying the matrix exponential without
constructing such matrix. Our approach is competitive if the problem has to be solved repeatedly for the same
model with different initial conditions. We will consider a comparison of the method in[19,13]with our approach
separately.

We begin with a review of the bandlimited functions inSection 2and construct derivative operators incorporating
boundary and interface conditions in the following section. InSection 4we provide several numerical examples
demonstrating the accuracy of the derivative matrix based on bandlimited functions and also construct integration
operators with respect to bandlimited functions. In the following section we review the separated representation
and the PLR representation, and describe linear algebra algorithms for operators in these representation. We also
introduce the PLR representation and describe linear algebra algorithms for operators in this representation. Finally,
we apply these tools to solve the acoustic equation in two dimensions inSection 6and give a number of numerical
examples and comparisons.

2. Bandlimited functions and their approximations

In physical phenomena there is always a bound for both the spatial/time extent and the wavenumber/frequency
range. However, a function cannot be compactly supported in both the space and the Fourier domain. In order
to manage this apparent contradiction, it is natural to consider the basis of eigenfunctions of the space and band
limiting operator. This has been the topic of a series of papers by Slepian et al.[1–5], which introduced the prolate
spheroidal wave functions (PSWFs) as an eigensystem bandlimited in [−c, c] and maximally concentrated within
the space interval [−1,1].

The bandlimited periodic functions can be expanded into the Fourier basis{eikπx}N
k=0 or, if we consider zero

boundary conditions, into the basis{sink(π(x+ 1))/2}Nk=1. However, in order to divide the computational domain
into subdomains, we need to allow arbitrary boundary conditions on the subdomains, and neither the Fourier nor
the sine basis are then acceptable. This motivates the introduction of a basis that can efficiently represent functions
of the typeeibx for an arbitrary real valueb, such that|b| < c, wherec is a fixed parameter, the bandlimit.

We note that solutions of equations of mathematical physics behave more like exponentials than polynomials.
This provides a naive but compelling motivation for using bandlimited functions rather than polynomials, as a
tool for approximating solutions. As we demonstrate, for a given accuracy, computing with bandlimited functions
significantly reduces the computational cost.
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andQc = (c/2π)F∗
c Fc:

Qc(ψ)(y) = 1

π

∫ 1

−1

sin(c(y − x))
y − x ψ(x) dx.

The PSWFs are the eigenfunctions of the operatorsQc andFc. The eigenvaluesλ of Fc andµ ofQc are related via

µ = c

2π
|λ|2. (3)

In our notation we may suppress the dependence of the eigenfunctions and eigenvalues onc.
Let us consider the spaces of bandlimited functions,

Bc = {f ∈ L2(R)|f̂ (ω) = 0 for |ω| ≥ c}.

The PSWFs form a complete basis inL2([−1,1]) andBc [1]. The eigenfunctionsψj(x) are real and orthogonal on
both [−1,1] andR:∫ 1

−1
ψi(x)ψj(x) dx = δij (4)

and ∫ ∞

−∞
ψi(x)ψj(x) dx = 1

µi
δij, (5)

whereµi are eigenvalues of the operatorQc.
The PSWFs are uniformly bounded on [−1,1], ‖ψj‖L∞([−1,1]) ≤ Kc, for some constantKc, for all j = 0,1, . . .

The existence ofKc
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Proposition 2. For c > 0andε > 0,we construct nodes−1< θ1 < θ2 < · · · < θM < 1andweightswk > 0,such
that for anyx ∈ [−1,1]:∣∣∣∣∣

∫ 1

−1
eictx dt −

M∑
k=1

wk eicθkx

∣∣∣∣∣ < ε (7)

and the number of nodes, M, is (nearly) optimal. The nodes and weights maintain the natural symmetry, θk =
−θM−k+1 andwk = wM−k+1.

Thus, we can integrate all functionseibx with |b| < c usingProposition 2. The nodes and weights inProposition 2
are computed as a function of the bandlimitc > 0 and the accuracyε > 0 and can be viewed as the generalized
Gaussian quadratures for the bandlimited functions. We note that the algorithm in[7] identifies the nodes of the
generalized Gaussian quadratures as zeros of thediscreteprolate spheroidal wave functions (DPSWF) corresponding
to small eigenvalues. For a study of DPSWFs we refer to[5].

2.2. On the distribution of nodes for Gaussian quadratures

As it is well known, nodes of Gaussian quadratures (both the usual and generalized) accumulate near the end
points as the number of nodes grows. The rate of such accumulation has a critical influence in a variety of applications
where quadratures are used either for integration or interpolation.

Although we compute the nodes and weights as in[7] by selecting first the bandlimit,c, and then computing
the minimal (or nearly minimal) number of nodes,M, to achieve a given accuracyε, once such quadratures are
generated we use the number of nodes as the variable andc = c(M, ε) to study node accumulation.

Let us consider the ratio

r(M, ε) = θ2 − θ1
θ�M/2� − θ�M/2�−1

, (8)

where “�M/2�” denotes least integer part. Observing that the distance between nodes of the Gaussian quadratures
changes monotonically from the middle of the interval toward the end points, and that the smallest distance is
between the two nodes closest to an end point, this ratio can be used as a measure of node accumulation. For
example, the distance between the nodes near the end points of the standard Gaussian quadratures for polynomials
decreases asO(1/M2), whereM is the number of nodes, so that we haver(M, ε) = O(1/M).

Using the method in[7]
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Fig. 1. The ratior(M, ε) in (8) and the oversampling factorα(M, ε) plotted against the number of nodes for quadratures of accuracyε ≈ 10−7

and≈ 10−17
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We haveEc ⊆ C∞([−1,1]) and prove the following theorem (seeAppendix A)

Theorem 3. For everyε > 0 andu ∈ Bc there exists a functioñu ∈ Ec, such that‖u− ũ‖L2([−1,1]) < ε.

Any bandlimited function fromEc can be approximated by a linear combination of a finite number of exponentials
in the form eicθkx where |θk| ≤ 1. The phasesθk are chosen as nodes of the generalized Gaussian quadratures
([7, Theorem 6.1], see also[6]). Following[7], we use the quadrature nodes and weights to construct bases forEc.

Theorem 4. Consideru ∈ Ec,

u(x) =
∑
k∈Z

ak eibkx

and let{θl}Ml=1 and{wl}Ml=1 be quadrature nodes and weights for the bandlimit2c and accuracyε2. Then there exist
coefficients{ul}Ml=1 and a constant A such that

∥∥∥∥∥u(x) −
M∑
l=1

ul e
icθl x

∥∥∥∥∥
L∞([−1,1])

≤ A

(∑
k∈Z

|ak|
)
ε.

The set of exponentials{eicθkx}M
k=1 may be viewed as a basis for bandlimited functionsEc with accuracyε. The

basis of exponentials has the obvious advantage of being easy to differentiate and integrate but these functions are
far from being orthonormal and one must be careful using them for numerical computations. In this respect they
are analogous to monomials as a basis for polynomials. In order to construct a basis analogous to the orthogonal
polynomials, we turn to the PSWFs.

Instead of using the PSWFs directly, we choose to construct their approximations[7], as it is sufficient for our
purposes. Given the bandlimitc > 0 and accuracy thresholdε > 0, let us construct quadrature nodes and weights
according toTheorem 4. We then solve the algebraic eigenvalue problem:

M∑
l=1

wl e
icθmθl �j (θl ) = ηj�j (θm) (10)

and define the approximate PSWFs on [−1,1] by

Ψj(x) = 1

ηj

M∑
l=1

wl e
icxθl �j (θl ), (11)

whereψ(θl) are the eigenvectors in(10).
The matrix in(10)does not have zero eigenvalues as can be easily checked numerically although we do not have a

proof for this fact. We expect the eigenvalues{ηj}Mj=1 to approximate the firstM eigenvalues{λj} and eigenvectors of
Fc. This is indeed the case, with the exception of small eigenvalues, where the relative error may be large. Since the
absolute values of the first� 2c/π eigenvalues in(2) are very close, some of them are numerically indistinguishable
(within the machine precision). As a result, we do not construct approximations to the individual PSWFs via(10)
but, instead, approximate correctly the subspace spanned by these functions.

Let us consider the inner products of functions in(11):

Sij =
∫ 1

−1
Ψi(x)Ψj(x) dx (12)

for i, j = 1, . . . ,M. We have the following proposition(see [7], Proposition 8.1).
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3. Derivative matrices with boundary and interface conditions
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Table 2
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Fig. 5. Absolute (left) and relative (right) errors for the first derivative of the functioneibx in the interval [−1,1] with |b| ≤ 16π using a basis
of 32 approximate PSWFs.

10−10, 10−7, and 10−4, with the corresponding bandlimitsc set to 5.5π, 7π, 8.5π, and 10.5π, respectively. We
differentiate the functionf (x) = eibx
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where⊗ denotes the Kronecker product,{Ak(j1, j′1)}rk=1 and {Bk(j2, j′2)}rk=1 areN ×N matrices,‖Ak‖ = 1,
‖Bk‖ = 1, sk > 0, and

∥∥∥∥∥L(j1, j
′
1, j2, j

′
2) −

r∑
k=1

skAk(j1, j
′
1) ⊗ Bk(j2, j

′
2)

∥∥∥∥∥ ≤ ε.

The number of terms in the representation,r<
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Fig. 9. Matrix subdivision for the 3-level PLR representation. The diagonal blocks are stored as full matrices and whereas the off-diagonal
blocks are of low rank and are represented accordingly.

5.2. The partitioned low rank (PLR) representation

The partitioned low rank (PLR) representation is a simplification of the partitioned singular value decomposition
(PSVD) introduced in[16,29,30], and used for spectral projectors in[17]. The PSVD is simplified by dropping the
requirement of orthogonality between vectors as implied by the SVD and using a much simpler algorithm for rank
reduction. The PSVD and PLR are more flexible than wavelet decompositions and are applicable to a wider class
of matrices. In particular, the exponential of a matrix with pure imaginary spectrum and the bandlimited derivative
matrix constructed inSection 4are of high rank, dense, non-Toeplitz, with entries oscillatory as functions of indices.
Unlike operators with real, negative spectrum, exponentials of such operators are not necessarily compressible via
the wavelet transform while the PLR representation is efficient even when wavelet or multiwavelet transforms
are dense. InSection 6we apply PLR representation to exponentials of operators with pure imaginary spectrum
(propagators) and its representation remains efficient for propagation over 1–2 periods (wavelengths).

The PLR representation is defined recursively by splitting a matrix into four blocks. The two diagonal blocks
are split further, whereas the two off-diagonal blocks are maintained using a low rank representation of the form∑
i σieif

∗
i . The 3-level PLR representation is illustrated inFig. 9, where we useDl U

l

, andL
l

to denote the
diagonal, upper and lower blocks of the partitioned matrix at different levels. This notation is convenient when
describing linear algebra operations in the PLR representation.

In all our computations for a given accuracyε > 0, we seek an approximatioñA of an operatorA such that
‖A− Ã‖ < ε, where‖ · ‖ is an operator norm. For many operators in the PLR representation, the coefficients of
*173.55181 1 T$ 225(v5 T0 TD
[(of)1 11 1 T)-29T90.1354-1745,522tom65�
0.73 0 T0 TD
/F4 1 Tf
-0.185 - 90.8755- T8.1832tom65�
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Let a matrixAbe in anm-level PLR representation. In order to compute the matrix–vector productAu, it is clear
from Fig. 9 that there are two types of matrix–vector multiplications we need to evaluate. We need to compute the
dense matrix–vector products for the diagonal blocks and the matrix–vector productsLkl ũ andUkl ũ, whereũ ∈ C

Nk ,
Nk = N/2k. If Lkl = ∑r

i=1 sieif
∗
i , then the matrix–vector product is computed as

Lkl u =
r∑
i=1

si〈u, fi〉ei. (29)

The cost of such matrix–vector multiplication is O(rNk). Assuming that the rank of all off-diagonal blocks is the
same, the total cost of computingAu is then estimated as 2mN2

m +∑m
k=1 2krNk. If the total size ofA isN = 2m,
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6. Solution of the acoustic equation in two dimensions

Let us consider the acoustic equation

utt = 1
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a numerical scheme for solving the homogeneous acoustic Eq.(30) in two dimensions with time independent
coefficients and boundary conditions. We proceed via the following steps:

(1) Construct the derivative matrices representing∂/∂x, ∂b/∂x, ∂/∂y and∂b/∂y using the results inSection 3.
(2) Construct separated representations of the multiplication operators 1/κ(x, y) andσ(x, y)
(3) Construct blocks of the 3× 3 spatial operator in(31)and use the algorithm inSection 5.3to reduce the separation

rank of each block.
(4) Select the time step
t (see below) and compute the matrix exponential e
tL using the scaling and squaring

algorithm (see e.g.[31]). The linear combinations and products of the matrix blocks given in the separated
representation are computed using the methods described inSection 5.

(5) Compute the solutionu(tk) = e
tL u(tk−1), starting fromu(t0) = u(0), for k = 1, . . . , Ntime.

We refer to this algorithm as the method of bandlimited bases (MBB) with the exponential propagator (EP). We
note that for time dependent boundary conditions the problem can be reduced to that with zero boundary conditions
and a forcing term.

If the factors in the separated representation (which are ordinary matrices) are large, we use the PLR representation
described inSection 5.2to speed up the computations in Steps 4 and 5 above. As discussed inSection 4, the norm
of the derivative projectors can be greatly reduced by using spectral projectors. For example, to construct projected
versions of∂/∂x and∂b/∂x (derivative operators in thex-direction), we form the block matrix,

L =
[

0 D0

D 0

]
,

whereD andD0 are constructed as inSection 3. The boundary conditions are enforced only for the functionu in
(31)which results in the structure of the matrixL above. We then construct the projected operator,

Lproj =
∑

|λk |≤c
λkekf Tk ,

wheree

TssεhεThεφdsσvid
lTeyCT[hvid
l<εRφεvεTf
φdyφvTεhεhεφdσφvTεvβCTj
oFβεvεTf
φd
oFσsDGεhεφdσφvBβεRmDεRφTεhεhεβεhεTDβεvεTfGRεβRoj
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the second comparison we write the acoustic equation (30) as a first order system:

[
v

u

]
t

=


0

1

κ

[
∂

∂x

(
σ
∂b

∂x

)
+ ∂

∂y

(
σ
∂b

∂y

)]

I 0



[
v

u

]
+
[
FŁ
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Fig. 10. Relative error in the max-norm for approximating the solution to(34) (top) and the computational time (bottom).

discretization as for the MBB with EP, but use the RK4 solver in time with the timestep
t/128. The results are
shown inFig. 10.

In order for the finite difference fourth order scheme to reach similar accuracy, we need more than 1024 samples
in space corresponding to an oversampling factor of approximately 22 (for periodic functions) and a timestep
t = 
t/128. With this sampling rate, the computational time per characteristic period is almost 3 min, or more
than 5000 times slower than using the MBB with EP. However, such oversampling factor is significantly larger
than is typically used. For this reason, in the next experiment we solve the same equation, but use 400 samples
in space for the fourth order scheme, corresponding to an oversampling factor of approximately 8.7 (compared
for the Nyquist frequency for periodic functions), and a timestep
t/32. The results are shown inFig. 11. In this
experiment, the computational times for the two methods are comparable, but the MBB with EP is significantly more
accurate.

In the next experiment, we demonstrate that the cost of improving accuracy is small for the MBB with EP. Let us
fix b = 19.5, and solve the model problem(34)using the MBB with EP for the bandlimitc = 20π with 52, 56, 60,
64, and 68 nodes. For all solutions, we use the time step
t = √

2/20 (approximately 1.4 characteristic periods).
The result is shown inFig. 12.

We observe that using 60 nodes takes approximately two times longer than using 52 nodes but gives approximately
4 more digits of accuracy. We also note that the error increases linearly over time.

6.1.2. Numerical dispersion
Due to inaccuracies of differentiation, the different Fourier modes of a pulse propagate with different speeds.

After some time the shape of the pulse deteriorates.
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Fig. 11. Relative error (log10) in the max-norm for approximating the solution to(34) (top), and the computational time (bottom).

Fig. 12. Relative error in the max-norm for approximating the solution to(34) for b = 19.
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To examine this phenomenon, let us consider the wave equation in one dimension,ut + cux = 0, the solutions
of which correspond to right-traveling waves. Solutions of this equation take the form:

u(x, t) = eiω(x−ct),

which we refer to as a Fourier mode of frequencyω traveling to the right with velocityc. Exact differentiation of
this solution yields

∂

∂x
u = iω eiω(x−ct).

If the error in the representation of the differentiation operator is of the form

∂

∂x
u � i f(ω) eiω(x−ct),

then the Fourier mode propagates with the velocitycf (ω)/ω. Unlessf (ω) = ω, which corresponds to the exact
differentiation, the Fourier modes of different frequencies travel with different velocities. For example, in the case
of the second order centered finite difference approximation of the derivative,f (ω) = sin(ω).

Fig. 13. Solution of(35)using the MBB with EP. The shape of the pulse is maintained throughout the propagation.
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6.1.3. Numerical results for variable coefficients
Let us consider the acoustic equation with variable coefficients. Since we do not have an analytical solution, we

simply display a sequence of images and study the shape of the pulse as it propagates throughout the domain. Let
us solve

utt = 1

κ(y)
(uxx + uyy), (x, y) ∈ (−1,1) × (−1,1), u(x, y,0) = e−1000(x2+y2),

u(±1, y) = u(x,±1) = ut(x, y,0) = 0, (36)

where

κ(y) = 1

1 − sin(π(y + 1))/2
.

The solution is a sharp pulse originating at the origin of the domain, and expanding outwards in the medium with
varying velocity. For the MBB with EP, we construct 128 quadrature nodes and weights for the bandlimitc = 54π.
We set the accuracy in the construction toε = 10−7. We use the time step
t = 2π/c corresponding to propagating
over two characteristic wavelengths. This choice of parameters yields the separation rank eitherr = 7 or 8 for the
blocks of the exponential operator. Using the PLR representation for computing e
tL u is in this case approximately
25% faster than using the dense representation of matrices in one dimension. The gain 
.8(one)-tely
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Fig. 16. Solution of(35)using the FD with RK4. Note the ripples which are caused by numerical dispersion.

to propagating over one-tenth of the characteristic wavelength. This sampling rate gives the two schemes
approximately the same computational time. The results are shown as sequences of images inFigs. 15 and 16.

Both solutions behave qualitatively in the same way by propagating faster in the upper part of the domain where
the wave velocity is higher. We note that for the MBB with EP, the shape of the pulse is maintained. For the FD
with RK4, the pulse begins to noticeably deteriorate, as the error accumulates due to the numerical dispersion.
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where limN→∞ EN (x) = 0 for all x ∈ [−1,1]. We chooseN sufficiently large, such that‖EN‖L∞[−1,1] < ε/2
√

2
and define forx ∈ [−1,1]

ũ(x) =
N∑
k=1

ak eibkx,

whereak = 2cσ(bk)/N. Thenũ is bounded on [−1,1] and|v(x) − ũ(x)| < ε/2√
2 almost everywhere.

Next we consider a functionu ∈ Bc. Then, sinceBc ∩ L1(R
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