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processing and data compression. In this paper we prove new theoretical results and develop n
algorithms for constructing such approximations. Since our numerical results are far better th
current proofs indicate, we also point out unresolved issues in this emerging theory.

Since our formulation is somewhat unusual, we first provide two examples. Let us consider the

1

x
=

∞∫
0

e−tx dt (1)

for x > 0. This integral representation readily leads to an approximation of the function1
x

as a sum
of exponentials. In fact, for any fixedε > 0, there exist positive weights and nodes (exponents) o
generalized Gaussian quadrature such that∣∣∣∣∣1

x
−

M∑
m=1

wme−tm x

∣∣∣∣∣ � ε

x
(2)

for all x in a finite interval, 0< δ � x � 1, and where the number of terms isM = O(logδ). Theoretically
the existence of such approximations follows from [19–22]. This particular example has been ex
in [27] with the goal of using (2) for constructing fast algorithms. Specific exponents and weigh
provided there for several intervals and values ofε, so that (2) can be verified explicitly. The approxim
tion (2) has important applications to fast algorithms that we will consider below.

The second example is the Bessel functionJ0(bx), whereb > 0 is a parameter andx ∈ [0, 1]. Using
the approach developed in this paper, we obtain for allx on [0, 1],∣∣∣∣∣J0(bx) −

M∑
m=1

ρmeτmx

∣∣∣∣∣ � ε, (3)

whereρm and τm are now complex numbers and the number of terms,M , is remarkably small an
increases withb andε asM = O(logb) + O(logε−1). In the sum (3) we will refer to the coefficien
ρm as weights and to the valueseτm as nodes; such terminology is natural since, as it turns out,eτm are
zeros of a certain polynomial as is usually the case for quadratures. We illustrate (3) in Figs. 1
by showing the error of the approximation and the location of the weightsρm and (normalized) node
eτm/b corresponding tob = 100π andε � 10−11. The number of nodes isM = 28 and they accumulat
at ei ande−i as expected from the form of the approximation in (3) and the asymptotics ofJ0 for large
argument,

J0(b) ∼ (1− i)eib + (1+ i)e−ib

2
√

πb
.

Also, since the real part of the exponents is always negative, Re(τm) < 0, all nodes belong to the un
disk. The approximation (3) with these 28 terms is remarkable in that there is no obvious integ
in (1), to represent the function and, thus, by some quadrature, obtain so few terms for a given a
and parameterb. Clearly, there are many possible integrals in the complex plane to represent the
function but, unfortunately, there is no obvious criteria to choose a particular integral or contour. F
such a contour may be attempted via the steepest descent method, in this case starting from, e.g

J0(bx) = 1

π

1∫
eibxt

√
1− t2

dt. (4)
−1
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Fig. 1. The functionJ0(100πx) and the error (in logarithmic scale) of its 28-term approximation via (3).

Fig. 2. The complex nodes (left) and weights (right) for the approximation ofJ0 in the interval[0,100π ].
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However, different changes of variables in (4) will result in different contours with no a priori guid
for the choice. Using, for example,t = sin(z), we have

J0(bx) = 1

π

π/2∫
−π/2

eibx sin(z) dz, (5)

and, withz = x + iy, we obtain the steepest descent path as the solution to sinx cosh(y) = ±1, where
|x| � π/2 andy > 0. The discretization of the integral along this path yields (3) but with more te
than via our method. On the other hand, upon examination of the weights and nodes in Fig. 2, it
that their location is not accidental. It appears as if our algorithm selects a contour on which a p
integrand is least oscillatory, since that would reduce the number of necessary nodes.

We note that by optimizing the location of the nodes, we reduce their number to keep it well bel
number of terms needed in Fourier expansions or in more general approximations like those di
in [11]. We do not have a precise estimate for the optimal number of terms but we have observe
only depends logarithmically on the parameterb and on the accuracy.

We have obtained similar results for a great variety of functions. The functions may be oscil
periodic, nonperiodic, or singular. For a given accuracy, we have developed algorithms to obt
approximation with optimal or nearly optimal number of nodes and weights.

These examples motivate us to formulate the following approximation problem. Given the ac
ε > 0, for a smooth functionf (x) find the minimal (or nearly minimal) number of complex weightswm

and complex nodesetm such that∣∣∣∣∣f (x) −
M∑

m=1

wmetmx

∣∣∣∣∣ � ε ∀x ∈ [0, 1]. (6)

For functions singular atx = 0, we formulate (6) on the interval[δ, 1], whereδ > 0 is a small paramete
Depending on the function and/or problem under consideration, we may measure the approximat
in (6) in a different way, e.g., we may use relative error.

As in our paper [11], we reformulate the continuous problem (6) as a discrete problem. Namely
2N + 1 values off (x) on a uniform grid in[0, 1] and a target accuracyε > 0, we find the minima
numberM of complex weightswm and complex nodesγm such that∣∣∣∣∣f

(
k

2N

)
−

M∑
m=1

wmγ k
m

∣∣∣∣∣ � ε ∀k, 0 � k � 2N. (7)

The sampling rate 2N has to be chosen as to oversamplef (x) and guarantee that the function can
accurately reconstructed from its samples. The nodes and weights in (7) depend onε andN. Once they
are obtained, the continuous approximation (6) is defined using the same weights while the ex
are set as

tm = 2N logγm,

to match the form in (6). The nonlinear problem of finding the nodes and weights in (7) is split int
problems: to obtain the nodes, we solve a singular value problem and findM roots of a polynomial; to
obtain the weights, we use the nodes to solve a well-conditioned linear Vandermonde system.
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2. Preliminary considerations: properties of Hankel matrices
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2.2. Fast application of Hankel matrices

For any vectorx = (x0, . . . , xN) denote byPx the polynomialPx(z) = ∑
k�0 xkzk of degree at mostN.

We want to compute the vectorHx, whereH is the Hankel matrix defined by the vectorh in C
2N+1. Let

L be an integer,L � 2N + 1 andα = ei2π/L a root of unity. We write

hr = 1

L

LL
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t (2),

T

Using (18) we expand the left-hand side of (26)

N∑
n=0

d
(L)
k+nun = 1

L

L−1∑
l=0

d̃lα
kl

N∑
n=0

unαnl = 1

L

L−1∑
l=0

d̃lPu
(
αl

)
αkl,

and, due to (17), the last term equals

1

L

L−1∑
l=0

Pū
(
α−l

)
αkl = ūk.

Finally, since|d̃k| = 1 for all k, thel2 norm ofd(L) equals 1. �
Next, we prove Theorem 3.

Proof. Part (1) is a direct consequence of (19), while part (3) follows from the first two. For par
(26) implies

Hdu = ū,

and with the notation‖ · ‖ for both the matrix 2-norm and the vectorl2-norm, we derive‖Hd‖ �
‖Hdu‖
‖u‖ = 1; thus, the norm is at least one. To see that it is at most one, letv ∈ C

N+1 and use (13) and
(18) to write for 0� k � N,

(Hdv)k = 1√
L

L−1∑
l=0

(
d̃lPv(αl)√

L

)
αkl.

The right-hand side of the last equation is well defined for 0� k � L − 1, and corresponds to the DF

of the vectord̃lPv(αl)√
L

. Since the DFT is unitary and|d̃l| = 1, we obtain

‖Hdv‖2 �
∥∥∥∥ d̃lPv(αl)√

L

∥∥∥∥
2

= ‖v‖2.

The last inequality holds for any vectorv
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Fig. 3. Locations of all roots of the c-eigenpolynomial corresponding to the singular valueσ28 in the approximation ofJ0 in
[0,100π ]. In practice, we only use the 28 roots inside the unit disk.

J0(x) in the interval[0, 100π ]. The 28 significant weights (see Fig. 2) are associated with the n
inside the unit disk. We note that the nodes corresponding to the discarded terms are located ou
very close to the unit circle. The error of the 28-terms approximation is displayed in Fig. 1.

By keeping only the terms with significant weights, the singular value indexM provides aM-term
approximation of the sequencehk with error of the order ofσM . This behavior matches that of indic
of the singular values in AAK theory, where theM th singular value of the Hankel operator equals
distance from that operator to the set of Hankel operators of rank at mostM .

Currently we do not have a characterization of the conditions under which finite Hankel matrice
satisfy the results of the infinite theory. We only note that assuming fast decay of the singular
and thatN − M terms have small weights in (19), the approximationbk = ∑M

m=1 wmγ k
m has the optima

number of terms. Indeed, letHb be the corresponding Hankel matrix forb. SinceHb has rankM , we
have

σM � ‖H − Hb‖ < σM + δ (27)

for someδ > 0. Under the assumptions ofN − M small weights and of fast decay of the singular valu
it is reasonable to expectδ small enough so thatσM + δ
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er

ng.
hk = f

(
k

2N

)
, 0 � k � 2N (28)

of the function to be approximated in the interval[0, 1], our goal is to find an optimal (minimal) numb
of nodesγm and weightswm such that∣∣∣∣∣hk −

M∑
m=1

wmγ k
m

∣∣∣∣∣ < ε ∀k, 0 � k � 2N. (29)

If the functionf (x) is properly oversampled, we also obtain the continuous approximation (7) off (x)

over the interval[0, b].
Let us describe the steps of the algorithm to obtain an approximation of the functionf with accuracyε.

(1) Sample the functionf as in (28) by choosing appropriateN to achieve the necessary oversampli
Using those samples define the correspondingN + 1× N + 1 Hankel matrixHkl = hk+l .

(2) Find a c-eigenpair{σ, u}, Hu = σ ū, with the c-eigenvalueσ close to the target accuracyε. We use
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Fig. 5. Nodes corresponding to singular values in the range[4.7× 10−15,6.7× 10−9] for the approximation ofJ0(100πx).

at ei and e−i . It is instructive to observe how roots in the first region stay some distance away
these accumulation points. As we have mentioned in the Introduction, this accumulation can be e
from the asymptotics of the Bessel function. More important from a computational perspective
the nodes slowly change their locations as we modify either the approximation interval (parametr
the constantb) or the accuracyε (parametrized by the singular values). In this way, computation of r
can be performed efficiently by, if necessary, obtaining first the nodes for a smallb and using them a
starting points in Newton’s method. To illustrate this property, in Fig. 5 we display the nodes for a
of singular values varying from 6.7× 10−9 to 4.7× 10−15.

As we noted for Fig. 2, the locations of nodes and weights suggest the existence of some
representation ofJ0 on a contour in the complex plane where the integrand is least oscillatory; integ
over such contour yields an efficient discretization that would correspond to the output of our algo

The final approximation (6) exhibits an interesting property that we also have observed for othe
latory functions. Suppose that we would like to obtain a decreasing function (an envelope) that t
each of the local maxima of the Bessel function and, similarly, a increasing function going throug
of the local minima. The approximation (6) provides such functions in a natural way. Estimatin
absolute value of an exponential sum, we define its positive envelope env(x) as∣∣∣∣∣

M∑
m=1

wmetmx

∣∣∣∣∣ �
M∑

m=1

|wm|eRe(tm)x = env(x),

and itsnegative envelopeas−env(x). In Fig. 6 we display the Bessel functionJ0(100πx) together with
its envelopes. We note that we are not aware of any other simple method to obtain such envelope

5.1. The Dirichlet kernel

Another representative example is the periodic Dirichlet kernel,

Dn(x) = 1

N

n∑
k=−n

e2π ikx = sinNπx

N sinπx
, (30)

whereN = 2n + 1. We would like to construct an approximation (6) ofDn on the interval[0, 1]. Since
Dn is an even function about 1/2 and it approaches 1 nearx = 1 (see Fig. 8), decaying exponentia
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Fig. 6. The Bessel functionJ0(100πx) together with its envelope functions.
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Fig. 7. The 22 nodes (left) and weights (right) for the approximation of the auxiliary functionG50 in [0,1].

We note that|e−tm | > 1 and, thus, the final approximation ofDn has nodes both inside and outside of
unit disk. In Fig. 8 we display the Dirichlet kernelD50 and the error of the approximation with 44 term
given by this construction. ForD200 we need 50 terms.

5.2. The kernelslog sin2(πx) andcot(πx)

Let us consider two examples of important kernels in harmonic analysis. The function log sin2(πx)

is the kernel of the Neumann to Dirichlet map on the unit circle for functions harmonic outside th
disk whereas cot(πx) is the Hilbert kernel for functions on the unit circle. We note that the Hilbert ke
represents a singular operator.

We first find identities similar to (31). Using the reflection formula for the gamma function,

�(x)�(1− x) = π

sin(πx)
, (34)

we obtain

log�(x) + log�(1− x) = logπ − 1
δ,Tf
1.1418 0 TD
0405�(
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Fig. 8. Dirichlet kernelD50 (top) and the error (in logarithmic scale) of its 44-term approximation via (33).

and ∣∣∣∣∣π cotπx −
M∑

m=1

ρ1
me−t1

mx +
M∑

m=1

ρ1
me−t1

m(1−x)

∣∣∣∣∣ � 2ε. (38)

5.3. Fast evaluation of one-dimensional kernels

Let us consider computing

g(x) =
1∫

K(x − y)f (y)dy, (39)
0
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at points{xn}N
n=1, xn ∈ [0, 1]. In practice, we need to compute the sum

g(xn) =
L∑

l=1

K(xn − yl)f (yl), (40)

where we assume that the discretization of the integral (39) has already been performed by som
priate quadrature and we include the quadrature weights inf (yl).

The direct computation of (40) requiresN · L operations. If we first obtain anM-term exponentia
approximation of the kernel, an elegant algorithm [28] computes the sum with accuracyε in
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6. Reduction of number of terms

The algorithm in Section 4 allow us to find approximations for a large variety of functions bu
not well suited to deal with the extremely large ranges needed in some applications. Also, we
like to have a mechanism to approximate functions that can be expressed in terms of other func
which we already have exponential sum approximations. Clearly, the nodes and weights for the
product of two known approximations are readily available, but their number is suboptimal. Simila
accurate but suboptimal expansion may be available, for example as the result of using some qu
rule or simply applying the discrete Fourier transform of the data to be approximated. We now
how to take advantage of accurate but suboptimal approximations using a general approach on
reduce (optimize) the number of terms of a given exponential sum. It consists of applying the alg
of Section 4 to a function which is already a linear combination of exponentials on the interval[0, 1] and
taking advantage of some simplifications which hold for this particular class of functions. We ob
fast algorithm for the following problem. Given

f (x) =
M0∑

m=1

bme−τmx, (43)

andε > 0, let us find a function (of the same form),

g(x) =
M∑

m=1

wme−tmx, (44)

with M < M0 and such that∣∣f (x) − g(x)
∣∣ � ε for x ∈ [0, 1]. (45)

Without loss of generality, we assume distinctτm and nonzerobm in (43). Following the algorithm in
Section 4, for some appropriateN  M0, we construct the Hankel matrixH = hn+n′ , n, n′ = 0, . . . , N ,
where

hn = f

(
n

2N

)
=

M0∑
m=1

bme− τm
2N

n. (46)

Denotingrm = e− τm
2N , m = 1, . . . , M0, we have

hn =
M0∑

m=1

bmrn
m, (47)

and, therefore, a factorization of the Hankel matrix

H = VBVt, (48)

whereV is theN + 1× M0 Vandermonde matrix

Vkm = rk
m (49)

andB is the diagonal matrix with entries(b1, . . . , bM0). We note that the matrixH has a large nullspace o
dimensionN +1−M0. In fact, the nullspace consists of vectors with coordinates given by the coeffi
of the polynomials

∏M0 (z − r )p(z), wherep(z) is any polynomial of degree at mostN − M .
m=1 m 0
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follows

f

For the second part we mimic the steps used to obtain (52) and we also use (60). The last part
from (56) withz = r̄l ,

Pu(rl) = (Av)l

σ c̄l

= v̄l

c̄l

. �

7. Approximation of power functions and separated representations

Let us discuss how to approximate the power functionsr−α, α > 0, with a linear combination o
Gaussians,∣∣∣∣∣r−α −

M∑
m=1

wme−pmr2



40
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Dngα,r (s) = pα
n

(−r2e2s
)
gα,r (s),

wherepα
n (x) are polynomials of degreen.

Before ending this section, we would like to remark on another application of the reduction alg
to the summation of slowly convergent series. These results will appear separately and here we o
that our approach yields an excellent rational approximation of functions liker−α, α > 0, providing a
numerical tool to obtain best order rational approximations as indicated by Newman [24] (see a
p. 169]).

8. Conclusions

We have introduced a new approach, and associated algorithms, for the approximation of functi
sequences by linear combination of exponentials with complex-valued exponents. Such approxi
obtained for a finite but arbitrary accuracy may be viewed as representations of functions which a
efficient (significantly fewer terms) than the standard Fourier representations. These representat
be used for a variety of purposes. For example, if used to represent kernels of operators, these ap
tions yield fast algorithms for applying these operators to functions. For multi-dimensional operato
have shown how the approximation ofr−α, α > 0 leads to separated representations of Green’s func
(e.g., the Poisson kernel).

We note that we just began developing the theory of such approximations and there are sti
questions to be answered. We have indicated some of these questions but, in this paper, instea
centrating on the theoretical aspects we have chosen to emphasize examples and applications
remarkable approximations.
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Appendix A

We show how to choose the parameters involved in the approximation ofr−β, β > 0 by linear com-
bination of exponentials as well as estimate the number of terms. Theorem 9 follows by subs
β �→ α

2 , r �→ r2, δ �→ δ2 and choosingN = O(logε−1) in the next

Theorem A.1. For anyβ > 0, 0 < δ � 1, and0 < ε � min
{

1
2, 4

β

}
, there exist positive numberspm and

wm such that∣∣∣∣∣r−β −
M∑

wme−pmr

∣∣∣∣∣ � r−βε for all δ � r � 1 (A.1)

m=1
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with

M � cβ(2N + 1)

π

[
β−1 log 4(βε)−1 + log 2�
� 1 1∞−1
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,
14,

ND nNN n∣
whereh = b−a
K

is the step size,[t] is the integer part of the real numbert , bn are the Bernoulli numbers
andBn(t) the Bernoulli polynomials. For allx ∈ [0, 1] andn � 1 we have the inequalities (see, e.g., [
p. 474]),

|B2n(x)|
2n! � |b2n|

2n! = 2

(2π)2n

∑
k�1

k−2n � 4(2π)−2n.

We then estimate the error in (A.6) as∣∣∣∣∣
b∫

a

f (t)dt − T K
h

∣∣∣∣∣ � 4

(
h

2π

)2N
b∫

a

∣∣D2Nf (t)
∣∣dt + 4

N∑
n=1

(
h

2π

)2n(∣∣D nN
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l of

le
a condition that follows from Lemma A.3 below. Sinceε � 1
2, assumption (A.4) implies thatN � 2 and,

therefore,
(

ε
4

)− 1
q � ε−1. Therefore, we set the following condition for the right end of the interva

integration,

ln
(
2qδ−1 ln

(
q(δε)−1

))
< b, (A.21)

which also implies (A.16).

Lemma A.3. Let p, δ, andε be positive numbers such thatpδ−1ε
− 1

p � e
1
2 and definet0 = ln 2pδ−1 ×

ln(pδ−1ε
− 1

p ). Then the inequality

epte−δet

< ε (A.22)

holds for all t � t0.

Taking the logarithm in both sides of (A.22) we gett − δet

p
< ln ε

p
, and introducing the new variab

x = δet

p
� 1, we obtain

ln
(
pδ−1x

) − x <
ln ε

p
(A.23)

or

c = ln pδ−1ε
− 1

p < x − ln x.

Since 1− x � − lnx for positivex, we have

c < 2c − ln2+ (1− c) � 2c − ln(2c),

and, thus, (A.23) holds forx � 2c sincex − ln x is increasing forx � 1.

A.4. Condition forI and selection of the step sizeh

Let us show by induction onn � 0, that for allβ > 0
∞∫

−∞

∣∣Dnf
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