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form (1.1) is not good enough, then there is no way within this framework to improve
the accuracy.

We use the natural extension of separation of variables

f(x1, . . . , xd) =

r∑
l=1

slφ
l
1(x1) · · · φl

d(xd) + O(ε) ,(1.2)

which we call a separated representation. We set an accuracy goal ε first, and then
adapt {φl

i(xi)}, {sl}, and r to achieve this goal with minimal separation rank r. The
separated representation seems rather simple and familiar, but it actually has a sur-
prisingly rich structure and is not well understood. It is not a projection onto a
subspace, but rather a nonlinear method to track a function in a high-dimensional
space while using a small number of parameters. In section 2 we develop the separated
representation, extending the results in [3] and making connections with other results
in the literature. We introduce the concept of the condition number of a separated
representation, which measures the potential loss of significant digits due to cancel-
lation errors. We provide analysis and examples to illustrate the structure of this
representation, with particular emphasis on the variety of mechanisms that allow it
to be surprisingly efficient. Note, however, that the theory is still far from complete.

Many linear algebra operations can be performed while keeping all objects in the
form (1.2). We can then perform operations in d dimensions using combinations of
one-dimensional operations, and so achieve computational complexity that formally
scales linearly in d. Of course, the complexity also depends on the separation rank
r. The optimal separation rank for a specific function or operator is a theoretical
question, and is considered in section 2. The practical question is how to keep the
separation rank close to optimal during the course of some numerical algorithm. As we
shall see, the output of an operation, such as matrix-vector multiplication, is likely to
have larger separation rank than necessary. If we do not control the separation rank,
it will continue to grow with each operation. In section 3 we present an algorithm for
reducing the separation rank back toward the optimal, and we also present a modi-
fied algorithm that avoids ill-conditioned representations. Although the modification
required is very simple, it makes the overall algorithm significantly more robust.

In order to use the separated representation for numerical analysis applications,
many algorithms and operations need to be translated into this framework. Basic lin-
ear algebra operations, such as matrix-vector multiplication, are straightforward and
were described in [3], but other operations are not as simple. In section 4 we continue
to expand the set of operations that can be performed within this framework by show-
ing how to solve a linear system. Many standard methods (e.g., Gaussian elimination)
do not make sense in the separated representation. We take two approaches to solv-
ing a linear system. First, we discuss how to use iterative methods designed for large
sparse matrices, such as conjugate gradient. Second, we present an algorithm that
formulates the system as a least-squares problem, combines it with the least-squares
problem used to find a representation with low separation rank, and then solves this
joint problem by methods similar to those in section 3. We also discuss how these
two general strategies can be applied to problems other than solving a linear system.

One of our target applications is the representation and computation of wave-
functions of the multiparticle Schrödinger equation in quantum mechanics. These
wavefunctions have the additional constraint that they must be antisymmetric under
exchange of variables, a condition that seems to preclude having low separation rank.
In section 5 we present the theory and algorithms for representing and computing
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with such antisymmetric functions. We construct an antisymmetric separation-rank
reduction algorithm, which uses a pseudonorm that is only nonzero for antisymmetric
functions. This algorithm allows us to guide an iterative method, such as the power
method, to converge to the desired antisymmetric solution.

We conclude the paper in section 6 by briefly describing further steps needed for
the development of this methodology.

2. The separated representation. In this section we introduce the separated
representation and discuss its properties. In order to emphasize the underlying physi-
cal dimension, we define operators and functions in d dimensions. To avoid confusion
between, e.g., a “vector in two dimensions” and a “matrix,” we clarify our notation and
nomenclature. A function f in dimension d is a map f : Rd → R from d-dimensional
Euclidean space to the real numbers. We write f as f(x1, . . . , xd), where xi ∈ R. A
vector F in dimension d is a discrete representation of a function in dimension d on a
rectangular domain. We write it as F = F (j1, . . . , jd), where ji = 1, . . . , Mi. A linear
operator A in dimension d is a linear map A : S → S, where S is a space of functions
in dimension d. A matrix A in dimension d is a discrete representation of a linear
operator in dimension d. We write A = A(j1, j′

1; . . . ; jd, j′
d), where ji = 1, . . . , Mi and

j′
i = 1, . . . , M ′

i . For simplicity we assume M ′
i = Mi = M for all i.

Definition 2.1 (separated representation of a vector). For a given ε, we repre-
sent a vector F = F (j1, j2, . . . , jd) in dimension d as

r∑
l=1

slF
l
1(j1)F l

2(j2) · · · F l
d
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2.1. Analysis and examples. In dimension d = 2, the separated representation
(2.1) of a vector F (j1
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2.1.1. Example: Sine of a sum. We next consider an elegant example that
illustrates several phenomena we have observed in separated representations.

One early numerical test of the separated representation was to consider a sine
wave in the diagonal direction, sin(x1 + · · · + xd), and attempt to represent it in
the separated form, using only real functions. We can use the usual trigonometric
formulas for sums of angles to obtain a separated representation, but then we will
have
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restricted to make them bounded. The condition number (Definition 2.2) of (2.11),
however, is κ = O(1/h), and such a representation may be unusable numerically.
Accounting for conditioning, we obtain the following theorem.

Theorem 2.5. Let Ai be a fixed, bounded operator A acting in the direction i,
ε > 0 be the error bound, and 0 < μ  1 be the machine unit roundoff. Assuming
μd‖A‖ < ε, we can represent

∑d
i Ai to within ε in the operator norm with separation

rank

r = O
(

log(d‖A‖/ε)

log(1/μ) − log(d‖A‖/ε)

)
.(2.12)

Proof. Consider the auxiliary operator-valued function of the real variable t,

G(t) = ‖A‖
d⊗

i=1

(
Ii + t

Ai

‖A‖

)
,(2.13)

and note that G′(0) =
∑d

i Ai. Using an appropriate finite difference formula of order
r, we approximate

G′(0) ≈
r∑

j=1

αjG(tj) ≡ ‖A‖
r∑

j=1

αj

d⊗
i=1

(
Ii + tj

Ai

‖A‖

)
,(2.14)

thus providing a separation-rank r approximation. If we choose equispaced tj with
stepsize h, then the truncation error of this finite difference can be made proportional
to (hr/r!)G(r+1)(ξ), where |ξ| ≤ h (see, e.g., [23]). Pulling out the norm ‖A‖ as we
did in (2.13) allows us to choose h = α/d for some α < 1 and bound the truncation
error by d‖A‖αr. The error due to finite precision arithmetic and loss of significance
is proportional to μ‖A‖/h = μd‖A‖/α. Adding these two errors and choosing α =
(μd/r)1/(r+1) yields the bound d‖A‖μr/(r+1). Setting this equal to ε and solving for
r, we obtain (2.12).

The estimate (2.12) implies that, as long as d‖A‖/ε  1/μ, the separation rank
is O(log(d‖A‖/ε)).

This example illustrates that
• low separation-rank can sometimes be achieved at the expense of (reasonably)

increasing the condition number. For problems in high dimensions it is an
excellent trade-off.

2.1.3. Example: Exponential expansions using quadratures. We next
consider an example of a methodology for constructing separated representations,
built upon the exponential. The exponential function converts sums into products
via ea1+a2+···+ad = ea1ea2 · · · ead , valid as long as ai commute. In this section ai will
be a function or operator in the direction i, such as x2

i or ∂2/∂x2
i .

Suppose we wish to find a separated representation for the radial function f(‖x‖)
supported on the ball of radius 1 in dimension d. Since physical forces often depend



2140 GREGORY BEYLKIN AND MARTIN J. MOHLENKAMP

By substituting
∑d

i x2
i for y2 and using the properties of exponentials, we obtain a

separated representation for f(‖x‖) on the ball. In this case we obtain a pointwise
relative error bound instead of (2.2). We thus have reduced the problem of finding a
separated representation for a radial function in dimension d to the one-dimensional
approximation problem (2.15). Usually the minimal r to satisfy (2.15) is not the
optimal separation rank for f(‖x‖), but it does provide an excellent upper bound.

The approximation problem (2.15) is addressed in [5] by extending methods in [4].
For certain choices of f(y) there is a systematic way to approximate it with small r,
even if the function has a singularity at zero. For example, let us consider f(y) = y−α

for α > 0.
Lemma 2.6 (see [5]). For any α > 0, 0 < δ < 1, and 0 < ε ≤ min{ 1

2 , 8
α } there

exist positive numbers τl and σl such that for all δ ≤ y ≤ 1∣∣∣∣∣ 1

yα
−

r∑
l=1

σle
−τly

2

∣∣∣∣∣ ≤ ε

yα
,(2.16)

with

r = log ε−1
[
c0 + c1 log ε−1 + c2 log δ−1

]
,(2.17)

where c0, c1, and c2 are constants that depend only on α. For fixed power α and
accuracy ε, we thus have r = O(log δ−1).

The construction uses the integral representation

1

yα
=

2

Γ(α/2)

∫ ∞

−∞
e−y2e2t+αt dt,(2.18)

as described in [19, 20]. For a given accuracy, the rapid decay of the integrand restricts
integration to a finite interval. Using the trapezoidal rule for an appropriately selected
interval and stepsize yields a separated representation (see [19, 20]). The resulting
representation is then optimized further using the results in [5].

This approach shows that
• there is a general, semianalytic method (based on representations with expo-

nentials) to compute separated representations of radial functions.
These representations for radial functions can be used to construct representations

for functions of operators. In particular, we can substitute an operator of the form∑d
i Ai, such as the Laplacian, for y2 in (2.15), and obtain a separated representation

for f((
∑d

i Ai)
1/2), valid on a portion of its spectrum. Using Lemma 2.6 with α = 2

and scaling to an appropriate interval, we can obtain a separated representation for
the inverse Laplacian.

Lemma 2.7. There exists a separated representation for Δ−1, valid on the annulus
(
∑d

i=1 ξ2
i )1/2 ∈ [δD, D] in Fourier space, with separation rank (2.17).

By applying the Fourier transform, we can obtain the corresponding Green’s
function

1

(d − 2)Ωd

1

‖x‖d−2
↔

r∑
l=1

σl

d⊗
i=1

1√
4πτl

exp(−x2
i /4τl),(2.19)

where Ωd is the surface area of the unit sphere in dimension d.
Notice that the bound in Lemma 2.7 is independent of d. For periodic problems it

is more natural to construct a representation on a cube rather than a ball. In dimen-
sion d the cube inscribed in the unit ball has side length 2d−1/2. If we compensate
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for this effect to maintain a cube of fixed side length, then the separation rank grows
as O(log(d)).

Robert Harrison (personal communication, 2003) pointed out to us an example
that produces a separated representation for a multiparticle Green’s function without
going through a Fourier-space construction. Following [26], we consider the multi-

particle operator I −
∑d

i=1 Δi, where Δi is the Laplacian in dimension three. The
Green’s function for this operator is

G(x) =
1

(2π)3d/2

K3d/2−1(‖x‖)

‖x‖3d/2−1
,(2.20)

where x = (x1, x2, . . . , xd), xi ∈ R
3, and K is the modified Bessel function. Using its

integral representation [18, equation (8.432.6)]

Kν(y) =
1

2

(y

2

)ν
∫ ∞

0

t−ν−1 e−t−y2/4t dt,(2.21)

we have

G(x) = π3d/2

∫ ∞

0

t−3d/2 e−t−‖x‖2/4t dt,(2.22)

and changing variables t = e−2s, we obtain

G(x) = 2π3d/2

∫ ∞

−∞
e−e−2s+(3d−2)s e−‖x‖2e2s/4 ds.(2.23)

The integral (2.23) is similar to that in (2.18) and, using a similar approach to that in
Lemma 2.6, we obtain a separated representation for the Green’s function G(x) with
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The class of complete asymptotically smooth functions is considered in [16, 43, 42].
Theorem 1 in [43] says essentially that error ε = O
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We start with F, an initial approximation of G in (3.1),

F =

rF∑
l̃=1

sF
l̃

Fl̃
1 ⊗ Fl̃

2 ⊗ · · · ⊗ Fl̃
d.(3.2)

If we have no other information, then we start with a random vector with rF = 1. If
we are performing an iteration such as the power method, then we use the previous
iterate as our starting guess. We then call the core algorithm described in section
3.1, and it improves the approximation F without changing rF. We exit the entire
separation-rank reduction successfully if ‖F − G‖ < ε. If not, we either call the core
routine again and repeat the process, or decide that rFF − G ‖
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Then for a fixed coordinate jk, form the vector bjk with entries

bjk(l̂) =

rG∑
l=1

sG
l Gl

k(jk)
∏
i �=k

〈Gl
i, Fl̂

i〉.(3.4)

The normal equations for the direction k and coordinate jk become

Bcjk = bjk ,(3.5)

which we solve for cjk = cjk(l̃) as a vector in l̃. After computing cjk(l̃) for all jk, we

let sF
l̃

= ‖cjk(l̃)‖ and F l̃
k(jk) = cjk(l̃)/sF

l̃
, where the norm is taken with respect to the

coordinate jk.
For fixed k and jk, it requires r2

F · d · M operations to compute B, rFrG · d ·
M operations to compute bjk , and r3

F to solve the system. Since B and the inner
products in bjk are independent of jk, the computation for another value of jk has
incremental cost rGrF + r2

F. Similarly, many of the computations involved in B and
bjk are the same for different k. Thus, one full alternating least-squares iteration
costs O(d · rF(r2

F + rG · M)). Because this algorithm uses inner products, which can
only be computed to within roundoff error μ, the best accuracy obtainable is ε =

√
μ.

3.2. Controlling the condition number. Several of the most efficient mech-
anisms for producing low separation-rank representations exhibit ill-conditioning (see
sections 2.1.1 and 2.1.2), and, thus, we need to control the condition number κ. In-
stead of just trying to minimize ‖F − G‖, we add a penalty based on κ and minimize·−O
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Without the modification in section 3.2, we indeed see that as we iterate using
alternating least squares, κ increases until the representation is untenable numeri-
cally. With the modification, the representation stabilizes at a poor, but tenable,
representation, which can then be “grown” into a good approximation. For example,
when d = 10 and r = 9, and we attempt to force an ill-conditioned representa-
tion by performing 1000 iterations, a typical result is approximation error ε = 0.055
and κ = 1.3 · 105. When we then allow r = 10, we achieve an approximation with
ε = 1.11 · 10−4 and κ = 1.9 · 104. (Choosing αj equally spaced in the identity leads
to κ ≈ 7.) By allowing r = 11, which is more than needed in the identity, we achieve
ε = 1.58 · 10−7 and κ = 1.3 · 102. Our conclusion from many experiments of this
type is that with the modification in section 3.2, the alternating least-squares al-
gorithm is robust enough to use routinely, and provides close-to-optimal separation
rank.

4. Solving a linear system. In this section we discuss how to solve the linear
system AF = G for F, where all objects are in the separated representation. One
of the standard methods for solving a linear system is Gaussian elimination (LU
factorization). In the separated representation, however, we do not act on individual
entries in a d-dimensional matrix, so it is not clear if there is a generalization of this
approach.

The situation is better with iterative algorithms. The first approach is to apply
one of the iterative methods designed for large sparse systems. We also use this
opportunity to describe how to combine other iterative algorithms with the separated
representation. The second approach is to formulate the system as a least-squares
problem, combine it with the least-squares problem used to find a representation
with low separation rank, and then solve this joint problem by methods similar to
those in section 3. This approach incorporates a separation-rank constraint into the
formulation of the problem, and can serve as a model for how to approach other
problems. We give a numerical example to illustrate this algorithm.

4.1. Iterative algorithms. Under the assumption that ‖I−A‖ <
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vectors, the performance varied from run to run. We report a typical result for each
test. All tests were performed on a laptop with a 1.7 GHz processor, had d = 20 and
M = 30, and requested approximation within ε = 10−6. For simplicity of explanation,
we used very low separation ranks, but as long as we avoid the separable case (rF0 = 1
or rA = 1; see below), these tests illustrate the general behavior.

The purpose of the first test was to check the correctness of the algorithm for
random inputs. We generated a random F0 with rF0 = 2 and a random A with rA = 6,
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Table 1

Achieved errors and cumulative time used (in seconds) for solving a linear system involving the
Laplacian in dimension 20.

rF ‖AF − G‖/‖G‖ Time
1 2.5 · 10−2 13
3 3.8 · 10−3 84
5 6.8 · 10−4 213
9 8.0 · 10−5 789
13 8.4 · 10−6 2048
19 9.5 · 10−7 6121

two iterations at each value of rF, and present the achieved error and time used for
selected rF in Table 1.

5. Antisymmetry. Motivated by the goal of computing the wavefunctions of the
multiparticle Schrödinger equation, in this section we describe how to deal with func-
tions that satisfy the antisymmetry constraint. This constraint is that the function
must be odd under the exchange of any pair of variables (i.e., f(x1, x2) = −f(x2, x1)).
We first sketch in section 5.1 the electronic N -particle Schrödinger equation in quan-
tum mechanics. Since electrons are fermions, we are interested in the antisymmetric
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so each electron has an additional discrete spin variable σ taking the values {− 1
2 , 1

2}.
We denote the combined variables (r, σ) by γ. Without changing our basic formal-
ism, we will consider the combined variable γ to be a single direction when using the
separated representation.

The Hamiltonian operator for the multiparticle Schrödinger equation is the sum
of three terms, H = T + V + W. The kinetic energy term T = − 1

2∇2 is defined by

−2T = (Δ1 ⊗ I2 ⊗ · · · ⊗ IN ) + · · · + (I1 ⊗ · · · ⊗ ΔN ),(5.1)

where the three-dimensional Laplacian

Δi =
∂2

∂x2
i

+
∂2

∂y2
i

+
∂2

∂z2
i

(5.2)

corresponds to electron i. The nuclear potential portion V is given by

V = (V1 ⊗ I2 ⊗ · · · ⊗ IN ) + · · · + (I1 ⊗ · · · ⊗ VN ),(5.3)

where Vi is the operator that multiplies by the function v(ri), which includes nuclear
potential terms as well as any external potentials. The electron-electron interaction
portion W of the Hamiltonian is defined by

W =
N−1∑
i=1

N∑
m=i+1

Wim ,(5.4)

where Wim is multiplication by the electron-electron interaction (Coulomb) potential
w(ri − rm) = c/|ri − rm|.

The antisymmetric eigenfunctions of H represent electronic states of the system
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Matrix-vector multiplication produces a vector with separation rank rArF. As we
iterate within the power method, the separation rank of Fm, if unattended, would
grow rapidly. To avoid this, we apply the separation-rank reduction after each it-
eration. The power method, however, does not take into account the antisymmetry
constraint on the wavefunction. We do not seek the largest eigenvalue of A, but rather
the largest eigenvalue that has an antisymmetric eigenfunction. In the following sec-
tions we describe how to incorporate this antisymmetry constraint.

5.2. The antisymmetrizer and the Slater determinant. Given a function
of N
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5.3. Antisymmetric separation-rank reduction. If we applied the power
method to AA instead of A, it would produce the wavefunction. As noted above,
applying A has complexity O(N !), and produces a vector with separation rank O(N !).
In this section we show how to apply the power method to AA, while never actually
applying A. The key is to incorporate A into the separation-rank reduction algorithm,
and then use (5.8) to evaluate its effect.

The separation-rank reduction algorithm in section 3 is, at heart, the minimization
of ‖F−G‖ with G fixed and a constraint on the separation rank of F. The algorithm
in section 4.3 for solving a linear system is, at heart, the minimization of ‖AF −
G‖. We now use the same principle to construct an antisymmetric separation-rank
reduction algorithm that minimizes ‖A(F−G)‖. We accomplish this without applying
A directly by using the pseudonorm ‖·‖A = ‖A(·)‖ for the approximation error bound
(2.2) and the power method normalization (5.5).

Let us drop the index m in the power method and consider the problem of reducing
the separation rank of G = Gm/‖Gm‖ to obtain F = Fm+1. We begin with a fixed
vector G and an approximation F, and will again fix a direction k and refine in that
direction, as in section 4. For simplicity we describe the k = 1 case. A straightforward
calculation, which we omit, produces the normal equations for this linear least-squares
problem. We form the matrix B with entries

B((ĵ, l̂), (j, l)) =

∣∣∣∣∣∣∣∣∣∣

δjĵ F l̂
2(j) · · · F l̂

N (j)

F l
2(ĵ) 〈Fl

2,
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on the left and Ul on the right, and then remove the first N − 1 columns and rows,
which now represent the nullspace. Similarly, we apply Ul̂ to the subvector b((·, l̂))
and remove its first N − 1 entries. We then solve (5.11) in this new form, insert N − 1
entries with value zero in each subvector, and then rotate the solution back to obtain
c.

It requires O(r2
FN2M) operations to compute the inner products in B, O(r2

FN3M2)
operations to compute the determinants in B, and similarly O(rGrFN3M) to compute
b. Solving (5.11) then takes O(r3

FM3) operations. The inner products can be updated
and reused for different k, but the other operations cannot. One full alternating least
squares iteration costs O(rFNM
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the zero pivot occurred, and thus remove it. The second term in (5.14) is modified to
compensate for these changes, but then the same general procedure is followed.

If a zero pivot is detected before the last step, then we can conclude that A(i, j) =
0 for all (i, j) and not compute them. One way to see this is to note that the rows of E

span a subspace of dimension at most N − 3. Augmenting with one extra coordinate
via xi can increase the span to dimension N − 2, and including the vector [δji w∗

j ]
can increase the span to dimension N − 1, but this still leaves a singular matrix.

5.4. Numerical example: Schrödinger wavefunction. In this section we
illustrate the effect of the antisymmetric separation-rank reduction by computing
the wavefunction for an academic model of the multiparticle Schrödinger equation
with one-dimensional particles and simplified potentials. Our model is certainly not
realistic, but the results do show some similarities to phenomena observed in physics.
We provide tools to interpret the results, and show that the wavefunctions that we
compute are consistent with the intuition developed by CI methods (see, e.g., [39]).

For our example we will let γ = x be a one-dimensional, periodic, spinless vari-
able. We choose the nuclear potential v(x) = cv cos(2πx) and the electron interaction
potential w(xi − xm) = cw cos(2π(xi − xm)). Our Hamiltonian is thus

H = T + cv

N∑
i=1

cos(2πxi) + cw

N−1∑
i=1

N∑
m=i+1

cos(2π(xi − xm)).(5.15)

We discretize by sampling the variable x at M equispaced points to form the vector x.
The second derivatives ∂2/∂x2 in T are represented with a 9-point centered finite dif-
ference with order 8, which we denote D

2. We choose the shift c ≈ ‖H‖/2 and set A =

cI − H. We combine cI − T − V into
∑N

i [(c/N)Ii − D
2
i − cv cos(2πxi)], and then repre-

sent it using the construction in (2.14) with stepsize hv and a pv-point finite difference
in the auxiliary parameter. The electron interaction is first separated using a trigono-
metric identity as cos(2π(xi−xm)) = cos(2πxi) cos(2πxm)−sin(2πxi) sin(2πxm), and
then each term is represented using a second derivative version of (2.14) with stepsize
hw and a pw-point finite difference. We use the parameters N = 5, M = 30, cv = 100,
cw = 5, c = 14000, hv = 0.1, pv = 6, hw = 0.1, and pw = 5, which were chosen not for
realism, but simply to provide an elegant example. With these parameters, we have
a separation rank r = 16 approximation for A with relative error less than 10−7. As
discussed in the previous sections, given a working precision of 10−16, an allowance
for the conditioning of the representation, and the need to compute square roots in
order to compute norms, this is the smallest error that we are able to measure.

We first construct a separable approximation F0 to the wavefunction by running
the power method algorithm while forcing the separation-rank reduction algorithm
to yield the best approximation with separation rank one. For separable functions,
one does not need the full antisymmetric separation-rank reduction, so we instead
orthogonalize the vectors F1

i after the ordinary reduction. By always orthogonalizing
in the order of increasing i, the vectors naturally order themselves from low to high
“energy” (frequency). We conjecture that this process produces the Hartree–Fock
solution, but we have not studied this issue in detail. In this example, we compute
F0 using 10000 iterations.

We then perform the main method with F0 as our starting guess, using ε = 10−4

and 1000 iterations. It took about a half an hour to run on a laptop with a 1.7 GHz
processor and 640 MB of memory, using double precision with machine roundoff μ
about 10−16
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Table 2

Separation rank, achieved approximation, and eigenvalue estimates for the separable (F0) and
main (F
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sl i = 1 i = 2 i = 3 i = 4 i = 5

l = 1

l = 2

0.999350

0.033093

Fig. 2. The computed wavefunction, represented by
∑2

l=1
sl

i
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Table 3

The amount of the ground state orbitals present in the two terms of the wavefunction in Fig-
ure 2, and their net excitations.

Ground state Wavefunction term
orbital
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Finally, we are working to resolve the critical question as to what extent separated
representations can represent functions and operators in general.
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