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When an algorithm in dimension one is extended to dimension d,
in nearly every case its computational cost is taken to the power d.
This fundamental difficulty is the single greatest impediment to
solving many important problems and has been dubbed the curse
of dimensionality. For numerical analysis in dimension d, we
propose to use a representation for vectors and matrices that
generalizes separation of variables while allowing controlled ac-
curacy. Basic linear algebra operations can be performed in this
representation using one-dimensional operations, thus bypassing
the exponential scaling with respect to the dimension. Although
not all operators and algorithms may be compatible with this
representation, we believe that many of the most important ones
are. We prove that the multiparticle Schrödinger operator, as well
as the inverse Laplacian, can be represented very efficiently in this
form. We give numerical evidence to support the conjecture that
eigenfunctions inherit this property by computing the ground-
state eigenfunction for a simplified Schrödinger operator with 30





This identity illustrates several key points. First, the ‘‘obvious’’
(analytic) separated representation may be woefully inefficient.
Second, even when � � 0 and r is optimal, there may be entire
families of separated representations. Third, among these
separated representations, some may have large separation
values, leading potentially to cancellations and, hence, poor
conditioning.

The Multiparticle Schrödinger Operator
We consider the Schrödinger operator H for a d-electron system
and show that the separation rank of an appropriate approxi-
mation of H grows only logarithmically in d. Without changing
the basic in formalism in Eq. 4, we choose to use three-
dimensional operators as our elementary building blocks. The
operator H is equal to �
 � N � E, where the Laplacian 
 is
defined by


 � �
1 � I2 � · · · Id� � · · · � �I1 � · · · � 
d�,
[7]



For periodic problems it may be more natural to restrict the wave
number to the ‘‘cubic annulus’’ max1�i�d ��i� � [�
, �D], in
which case the approximation (Eq. 17) needs to be valid on the
interval [
�d, dD], and thus the separation rank grows as r �
O{log[d2D�(
�)]} with the dimension d.

Basic Linear Algebra
The main point of the separated representation is that the
elementary objects on which we operate are one-dimensional, so
that linear algebra in dimension d is performed using only
one-dimensional operations. The computational complexities
are linear in d rather than exponential.

We assume that all objects have been discretized using N
points in each direction, so a vector in dimension d has Nd

entries. In d dimensions, a dense matrix has (N2)d entries,
whereas a banded matrix has (bN)d entries. In the separated
representation (Eq. 4), we will need to store d�r�N2 entries if the
matrices �i

l are dense or d�r�bN entries if they are banded. The
banded case demonstrates the effect of combining the separated
representation with a fast one-dimensional algorithm.

Addition of two matrices in d dimensions takes (N2)d opera-
tions if they are dense and (bN)d if they are banded. In the
separated representation the addition �̃ � �̂ is merely the



This linear least-squares problem naturally divides into sep-
arate problems for each coordinate. For fixed direction k, form
the matrix � with entries

B� l̂ , l̃ � ��
i	k

�Ṽi
l̃ , Ṽi

l̂�. [22]

Then, for a fixed coordinate jk, form the vector bjk
with entries

bjk
� l̂ � � �

l�1

r

slV k
l � jk��

i	k

�Vi
l, Ṽi

l̂�. [23]

The normal equations for the direction k and coordinate jk
become

�cjk
� l̃� � bjk, [24]

which we solve for cjk
(l̃) as a vector in l̃. After computing cjk

(l̃)
for all coordinates jk, we let s̃l̃ � 	cjk(l̃)	 and Ṽ k

l̃ (jk) � cjk(l̃)�s̃l̃, where
the norm is taken with respect to the coordinate jk.

For fixed direction k and coordinate jk, it requires r̃2�d�M
operations to compute �, r̃r�d�M to compute bjk

, and r̃3 to solve
the system. Since � and the inner products in bjk b �



is not used to compute the smallest eigenvalue, in particular due
to the large number of iterations required. However, it provides
a simple demonstration of the ability to compute in higher
dimensions.

The initial vector F0 is chosen with separation rank one. After
each iteration, we reduce the separation rank of Fk using Fk�1 as
the initial approximation in the alternating least-squares algo-
rithm. For small values of k, Fk does not have the properties of
the target eigenvector, and so it may have large separation rank.
To prevent the power method from slowing down, we use an
adaptively changing accuracy �k.

For this example we choose dimension d � 30 and a
one-directional discretization with N � 20. These choices make
	�	� 8�104, so we choose Cd � 5�104. The matrix � has apparent
separation rank 2d � d(d � 1) � 930 using trigonometric
identities, but we represent it with separation rank r � 22 using
the derivative formulation in Eq. 12, accurate to relative preci-
sion � � 10�7 in the operator norm. We iterate until the norm
	Gk	 has converged within 10�7 relative accuracy and use this as
the correct value for �(�). We then examine earlier iterates that
are accurate to within �, for various values of �. In Table 2 we
vary � and present the number of iterations needed to obtain that
precision, the separation rank of Fk, and the run time in seconds
on a ri2u-337.8(a)Ultra.


