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The formal representation of the quasi-periodic Helmholtz Green’s function obtained by



Þ Þ
in a fast and accurate manner. We note that the accurate computation of the
values of a Green’s function does not by itself resolve the issue of its efficient
application and use as an operator. Towards this end, we develop approxi-
mations of Green’s functions that resolve the problem of algorithmic efficiency in
applying them to discontinuous functions or potentials with singularities.

The key element of our approach is a fast algorithm for computing
convolutions with the quasi-periodic Helmholtz Green’s function,

uðxÞZ
ð

D
GqðxKyÞf ðyÞ dy



Besides Ewald’s (1921) method, there are other approaches for interpreting
and evaluating (1.6) (see Glasser & Zucker (1980) and Linton (1998) for a survey





Proposition 2.1. (Poisson summation formula) Let f2S(Rd), L be a Bravais
lattice, L� the reciprocal lattice and V the volume of the primitive cell. Then



3. Quasi-periodic Green’s function via absolutely convergent series

The quasi-periodic Green’s function formally described by (1.6) requires a



result, we may consider convolving Gq with functions from various classes, e.g.
Lp(D), and the convolution (1.1) gives us a classical solution of (1.4) and (1.5).
We prove that

Proposition 3.1. The function Gq in (3.4) is the quasi-periodic Green’s
function satisfying (1.2) and (1.3) for kO0, ks 2pdKkj j, where d 2L� and
k 2R

d. This result holds in any dimension dR2.

Proof. The quasi-periodic condition for GFourier in (3.1) follows from

GFourierðx C lÞZ 1
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X
d2L�

exp Kj2pdKkj2Ck2

4h2

� �
j2pdKkj2Kk2

eix$ð2pdKkÞeKik$l Z eKik$lGFourierðxÞ;

since e2pil$dZ1 for any l2L and d



where

FðxÞZ 1

2p



Remark 3.3. We note that to derive Gq, it is sufficient to consider the real part
of the free-space Green’s function Gfree





 Tf
7.671112F6 1 Tf
0.9758i31.668195 Tm
(exp)Tj
ET
250.016 448.668 69.846 -0.454 493.6818 Tm
(h)Tj
/FTm
(3)T3.6F9397 re
f
BT
/F2 7 TD2
f
6 0 T5 Tm022Tf
7.6711 0 0 7.6711 354.733Tm
5 7.6711 250 TD 5.4794 284.717195Tf
1.1071 0 TD
(i)Tj6
5.431112

2

j

2

p

d

j

C

ð

k

C

i

�

�

In the first term in (3.12), we exchange the order of summation and integration
since lOk. We then use the Poisson summation formula in proposition 2.1
to obtain
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where L� is the reciprocal lattice. By again switching the order of summation and
integration, we arrive at
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4. Fast convolutions with Green’s function

Representation of the quasi-periodic Green’s function as a sum of two rapidly
convergent series (3.1) and (3.2) yields a fast and accurate algorithm for its
application as a convolution. We truncate these series and obtain a separated
representation by approximating the integral in (3.2) via a sum of Gaussians.
Using the resulting approximation of Green’s function, we prove an accuracy
estimate (in operator norm) for its application. We then present the algorithm to
apply the operator, and estimate its computational complexity. We illustrate the
algorithm by presenting several examples.
(a ) Approximation of Green’s function

Let us outline how we obtain an approximation of the quasi-periodic Green’s
function (3.4).

Owing to the exponential decay of the terms in GFourier, we truncate the
Fourier sum

~GFourierðxÞZ
1

V

X
d2L�

j2pdKkj%kb

exp Kj2pdKkj2Ck2

4h2

� �
j2pdKkj2Kk2

eix$ð2pdKkÞ; ð4:1Þ

where we select parameters hO0 and bO0 so that the contribution of the
discarded terms is less than the desired accuracy e.

For Gspatial we perform a similar truncation again using the exponential decay
of its terms and, in addition, construct an approximation of Fsing in (3.3) as a
sum of Gaussians. For a fixed parameter h and given accuracy e, we select aO0
to truncate the sum (3.2) as X

l2L

jlj%a

eik$lFsingðx C lÞ;

so that the contribution of the discarded terms is less than e. Then, for fixed k, we
approximate Fsing as in Beylkin et al. (submitted) using a discretization of the
integral. Thus, we obtain an approximation of Fsing as a sum of Gaussians,

SsingðxÞZ
XN

jZ1

qje
Ksj jxj2 ; ð4:2Þ

where sjO0 and qjO0. The weights qj depend on the dimension d and the
parameter k (see Beylkin et al. (submitted) for details). Using (4.2), we
approximate Gspatial as

~GspatialðxÞZ
X
l2L

jlj%a

eik$lSsingðx C lÞ: ð4:3Þ
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Combining (4.1) and (4.3), the quasi-periodic Green’s function is approximated as

~GqðxÞZ ~GspatialðxÞC ~GFourierðxÞ: ð4:4Þ

We note that there are two sources of error in this approximation: (i) a truncation
error due to replacing infinite series by finite sums and (ii) an approximation
error introduced by (4.2). Owing to the exponential decay of the terms in
both series, the number of significant terms depends only logarithmically on the
desired accuracy.

We compute convolutions with ~GFourier in the Fourier domain as
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We may choose hO0 and bO1 so that
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We now estimate the spatial error by

kGspatialK~GspatialkL1ðD





With this selection of h, note that in (3.1) the discarded terms jpjRkb satisfy

exp Kðjpj2Kk2Þ
4h2

� �
jpj2Kk2

%
e

k2ðb2 K1Þ :

With h given by (4.16), we now select the spatial truncation parameter a so that
the contribution of the discarded terms in (3.2) is below the desired accuracy.

Although we only require bO1, in practice the choice of this parameter does
depend on k and e. For moderate size k we select bw3, for large k we may select a
smaller b and for small k we need to choose b larger.

Remark 4.2. Different choices of h have been made in several papers considering
Ewald’s summation (e.g. Catti (1978) or Jordan et al. (1986) for kZ0). We would
like to point out (see also Moroz 2006; Oroskar et al. 2006 or Beylkin et al.
submitted) that some choices of h may induce numerical cancellation resulting in a
loss of accuracy. For example, choosing h



(iv) Initialization of the output function. The output function, a sum of spatial
and Fourier contributions, is evaluated on a user chosen set of Nout points.
While the spatial contribution may retain an adaptive structure if we use
the algorithm from Beylkin et al. (2008), the Fourier contribution results
in O(kd) points due to the required Nyquist sampling rate. Thus, unless
there are special circumstances, Noutwkd. Again, in the worst case we
have Noutwkd CC2ðlog eK1Þd.

Applying the operator:

(i) Convolution with ~Gspatial. Using the algorithm in Beylkin et al. (2008), the

complexity of applying ~Gspatial in (4.7) is OðNa$p$N$NinÞ. Alternatively, the

fast Gauss transform (see Greengard & Strain 1991; Strain 1991;
Greengard & Sun 1998) may be used, which results in a similar computa-
tional complexity. Although p$N is formally estimated as p$N wðlog eK1Þ3,
we note that within the range of parameters we experimented with, this
product behaves effectively as a constant (the overestimation is, in part,
due to the fact that the algorithm in Beylkin et al. (2008) does not use all
Gaussian terms on all scales). Note that in (4.7) the term lZ0 dominates
the computational cost since this is the only term contributing to fine scales
in a multiresolution representation of the operator. With these caveats, the

computational complexity of computing (4.7) is O kd CC3ðlog eK1Þd
� �

,
where C3 is a constant.

(ii) Convolution with ~GFourier. We evaluate the Fourier transform of the input
function at the reciprocal lattice points within the sphere j2pdKkj%kb
and denote by NF their total number. We note that NF wðlog eK1Þd due to
the exponential decay of the terms in (3.1). Given a set of locations x to
evaluate (4.5), we use the USFFT (Dutt & Rokhlin 1993; Beylkin 1995;
Lee & Greengard 2005) to evaluate the trigonometric sum. Thus, the
computational complexity is OðNoutCNFÞCOðkd log kÞ, or O kd log kC

�
C4ðlog eK1ÞdÞ, where C4 is a constant.

We note that the performance of both, the spatial and Fourier, components of



We note that the representation in (4.17) allows us only to evaluate Green’s
function and does not provide an algorithm for its application as an operator. By
contrast, our approach treats Green’s function as an operator and constructs an
approximation that yields a fast and accurate algorithm for its application. For
the purpose of comparison, we implemented the evaluation of Green’s function in
(4.17) by computing the coefficients S A

l in (4.17) as lattice sums, writing
S A

l ZDSl CS G
l . We use (McPhedran et al. 2000, eqn (17)) to compute DSl and

(Linton 1998, eqns (2.49), (2.53) and (2.54)) to compute S G
l .

In figure 1, we display the error between (4.17) and our approximation ~Gq in
(4.4) constructed for accuracy ez10K9. We note that the discrepancy near rZ0
is due to our method of approximating Gq and does not affect its application as
an operator (beyond accuracy ez10K9) as is demonstrated in proposition 4.1.

Next we verify accuracy of our algorithm by considering the quasi-periodic
function

uðxÞZ
ffiffiffiffiffiffi
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r
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eKajxKrnClj2 ð4:18Þ

with parameters aZ300, kZ(1/3, 4/7), r1Z(0, 0), r2Z(1/10, 1/10) and r3Z(K3/
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Figure 3. A quasi-periodic Green’s function with kZ(3, 5) and kZ100 for a two-dimensional
hexagonal lattice with lattice vectors l1Zð1; 0Þ and l2Zð1=2;

ffiffiffi
3

p
=2Þ plotted in the region

½K1=2; 1=2�!½K1=2; 1=2�: (a) a real part and (b) an imaginary part.
both the spatial and Fourier parts of the algorithm. In figure 2, we display the
absolute error plotted along the diagonal of the primitive cell. Green’s function was
approximated with eZ10K11, whereas the L2-norm of the solution is kuk2z1:76
and that of the right-hand side is kf k2z1:31$103. This result agrees with the
estimate in proposition 4.1.

Next, we illustrate the results of convolving with several quasi-periodic Green’s
functions. In figure 3, we illustrate the application of a two-dimensional quasi-
periodic Green’s function to a delta function. The motivation for presenting this
example is twofold: (i) to demonstrate that our approach is applicable to functions
whose Fourier transforms have slow decay and (ii) to illustrate Green’s function
itself. In figure 4, we display the result of convolving a periodic Green’s function with
a fairly complicated function with jump discontinuities. We also display cross
sections of the (periodic) output function.
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5. Green’s functions with boundary conditions on simple domains

We now have the necessary tools to construct Green’s functions that incorporate
boundary conditions on simple domains by extending our results for the quasi-
periodic Green’s function (3.4). We note that although the resulting integral
operators are no longer convolutions, the algorithm for applying these Green’s
functions is similar to that for the quasi-periodic Green’s function. The
application of Green’s functions satisfying Dirichlet, Neumann or mixed



boundary conditions is again split between the spatial and the Fourier domains.
In the spatial domain, we use separated representations involving Gaussians and
in the Fourier domain apply a simple combination of multiplication operators.

For ease of notation, we consider the two-dimensional case with Dirichlet
boundary conditions on the primitive cell DZ ½K1=2; 1=2�!½K1=2; 1=2�. We
construct these Green’s functions using the periodic Green’s function (with 2k
instead of k), satisfying

ðDC4k2ÞGpðxÞZKdðxÞ
and (1.3) with kZ0. We note that the formal description of the periodic Green’s
function in this case is of the form

G formal
p ðx 1; x2ÞZK

1

4

XN
n1ZKN

XN
n2ZKN

Y0 2k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx 1 Cn1Þ2 Cðx 2 Cn2Þ2

q� �
;

since, in (1.6), the sum associated with the imaginary part of the free-space
Green’s function is zero, l1Zð1; 0Þ and l2Zð0; 1Þ.

We write Gp via the sum of two rapidly convergent series in (3.4),

Gpðx 1; x 2ÞZ
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2p

X
n2Z2

ðN
logð2hÞ

exp Kjx Cnj2 e2s

4
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Thus, the application of the operator (5.2) separates along each direction and we
compute ð

D

~G
D
spatialðx; yÞf ðyÞ dy Z
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which may be accelerated further using fast algorithms described in §4.
In the Fourier domain, for a desired accuracy e and fixed h, we select bO1 to

satisfy (4.8) and obtain
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We apply this operator as

ð
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Fourierðx;yÞf ðyÞ dy Z
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where f̂ D is given in (4.6). We use USFFT to evaluate (5.5) as in §4c.

Remark 5.1. As described by



Remark 5.2. The construction of Green’s functions with Dirichlet or Neumann
boundary conditions on D in dimension dZ3 is completely analogous to the two-
dimensional case and is composed of a combination of eight terms. Importantly,
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representations, and (iii) the ability to achieve a finite, arbitrary accuracy.
Algorithms with the last two features have been developed for non-oscillatory
kernels and have been used to solve problems in quantum chemistry (see
Harrison et al. 2003, 2004; Yanai et al. 2004a,b). Since these algorithms for
oscillatory and non-oscillatory kernels may be considered within the same
framework, we intend to build a unified software framework for their application.
We expect further development in this direction. In all cases, we obtain
representations of Green’s functions that lead to fast adaptive solvers for
corresponding problems.

Our approach (with minor modifications) is also applicable to the case kZ0.
However, using multiresolution, both the interpretation and the application of
the operator may be kept entirely in the spatial domain and we plan to consider
this case separately.

A natural application of the quasi-periodic Green’s function is in the
computation of band gaps in crystal structures. We plan to investigate these
applications with particular attention to potentials (indices of refraction) with
singularities (discontinuities) since, in such cases, the efficiency of our algorithms
does not degrade significantly.

We note that our method extends to problems where the lattice dimension is
less than the dimension of the embedding space (sometimes referred to as
gratings), which will be described elsewhere.

Finally, we note that our results shed new light on Ewald’s approach of
splitting between spatial and Fourier domains, which we use as a tool to obtain
semi-analytic, separated representations for Green’s functions.

This research was partially supported by NSF grant DMS-0612358, DOE/ORNL grant
4000038129, DOE grant DE-FG02-03ER25583 and AFOSR grant FA9550-07-1-0135.
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