

156 (2001) 201 218

www.elsevier.com/locate/physd

Ab t act

MSC: 37, 40; 37, 40; 37, 50

1. I t _ , ct__

A $(A): \qquad (A): \qquad (A):$

U.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964 / 1.

1964

$$x' = x + y'$$
, $y' = y - k(1 + h \dots) x$, $x' = -kh(1 + h \dots) x$

$$x' = x + \frac{1}{y}, \qquad y' = y + V(x).$$
 (4)

3. A. t.-. t ab __.t

4. C., t.

that C is not identically zero. Then given any a < b, there is a nonzero measure of initial states (0, 1) and a sequence $C_t \in (V)_+ \cup (V)_-$ such that the solution of (14) has momenta, $t = T_2(t_{-1}, t)$ satisfying $t_0 < a$ and $t_0 > b$ for some time T.

$$\mathbf{P} = . \quad , \quad , \quad , \quad , \quad , \quad , \quad c_{-} \in . \\ (V)_{-} = . \quad , \quad c_{+} \in . \\ (V)_{+} = . \quad , \quad , \quad , \quad x_{t} = c_{\pm} \quad , \quad (C(t)) = \pm 1. \\ (14)_{+} = . \quad , \quad (14)_$$

'w
$$\tilde{C}$$
 ... in ... 'w ... r r r \tilde{C} \tilde{C} = $V(c_{\pm}(\))$ $C(\) \geq 0$.

$$\mathcal{T}_{\mathbf{I}} \circ \tilde{C}(+2) - \tilde{C}() > 0, \quad \mathbf{A} \circ \mathbf{w} \circ \mathbf{w}_{\mathbf{I}} \circ \circ \mathbf{w}_{\mathbf{I}} \circ \mathbf{w} \circ \mathbf{w}_{\mathbf{I}} \circ \mathbf{w}_{\mathbf{I}$$

4.2. Standard example

$$L(x, x', , ') = \frac{1}{2} (x' - x)^2 + \frac{1}{2} (' -)^2 + k \dots x(1 + h \dots),$$
(15)

'w 'w h = k > 0, h > 0.

A h = k > 0, h > 0.

(15) h = k > 0, h > 0.

 $t \to , \quad * = 2 m. \forall , \quad , (0, 2 m), \quad (2 m), \quad , (0, 2 m), \quad (3 m), \quad (4 m$

$$^* = (t_{t+1} - t)^* = \frac{1}{t_{t+1}} \int_{t_{t+1}}^{t_{t+1}} (U'(t_t)).$$

(16), (16), (16), (17), (17), (17), (17), (18), (18), (19),

1., .,

$$E = \{z \in R : f(z) \notin R\} = R \setminus f^{-1}(R).$$

 $f = \{f \in \mathcal{F}_{n}, f \in \mathcal{F}_$

$$\mu(E) = \mu(R \setminus f^{-1}(R)) = \mu(R) - \mu(R \cap f^{-1}(R)) = \mu(R) - \mu(f(R) \cap R) = \mu(R \setminus f(R)) = \mu(I).$$
 (17)

 $S^{0} = I, \qquad S^{t} = f(S^{t-1}) \cap R = f(S^{t-1} \setminus E).$

$$E_b$$

$$\mu(p(I_a) \cap E_b) = \mu(p(I_a)) - \mu(p(I_a) \cap E_a) \ge \mu(I_a) - \mu(E_a).$$

$$I_t = R \setminus f_t(R), \qquad E_t = R \setminus f_t^{-1}(R).$$

$$S_k^k = I_{k-1}, \qquad S_k^{t+1} = f_t(S_k^t \setminus E_t).$$

$$\mu(S_k^t) < \mu(R)$$

$$k = -\infty$$
(18)

 \cdot , t.

L a 4. Let f_t be a sequence of measure-preserving homeomorphisms, and R a measurable set with incoming sets I_t and exit sets I_t I_{012}

5.2. Maps of the cylinder

= y', x'-y, x.

 $A = \{z \in T : f^{-1}(z) \in B\}.$

 $D = \{z \in B : f^{-1}(z) \in T\}.$

C. a **5.** Suppose that f_t is a sequence of area and end-preserving homeomorphisms of the cylinder, and that the net flux $t \ge 0$. Let A denote the annulus bounded by the circles $\{y = a\}$ and $\{y = b\}$ where a < b. Then, there is a set of positive measure of orbits that cross the annulus.

 $+1.6. \quad , \quad 1.8. \quad ,$

5.3. Standard map with net flux

$$x' = x + y'$$
, $y' = y - k$, $(x) + \frac{1}{2}$.

 $= 0, \quad k < k_{cr} \approx 0.971635406 ...$ $k = 0.5 ... \cdot v_{cr} = 0... \cdot v_{cr} = 0.5 ... \cdot v_{cr} = 0... \cdot v_{cr} = 0.5 ... \cdot v_{cr} = 0... \cdot v_{cr} = 0$

$$X = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

6. P _ t _ c _ _ t

$$z_{t} = (z_{t-1}) = \begin{cases} -x_{t-1} + 2x_{t} + \frac{1}{t} & V(x_{t}) / 1 + C(t) \\ t & \\ -t_{t-1} + 2t + W(t) + V(x_{t}) & C(t) \end{cases}$$

$$(19)$$

L a 6. Suppose that , given by (19), is a C^2 map of T^4 , such that $1 + C() \ge > 0$. Then, for any sequence $\{c_0, c_1, \ldots\}$ with $c_t \in \mathcal{N} \cap \mathcal{A}$, any initial condition (0, 1), and any > 0, there exists an orbit $Z_t = (X_t, X_{t+1}, t, t+1)$, $t \ge 0$ of such that

$$|x_t-c_t|\leq t\geq 0,$$

provided

$$0 \le \quad < \quad _0 = \frac{}{\left(4 + a\right)'} \tag{20}$$

where $(,b) \equiv t \geq 0$ $V(c_t \pm t)$.

 $(1/) \ V(c_{t+1}^{+}) > (4 + a) \ T_1 \ ...$ (20). $A \ V(c_{t+1}^{+}) > (4 + a) \ T_1 \ ...$ (20). $A \ V(c_{t+1}^{+}) > (4 + a) \ T_1 \ ...$ (20). $A \ V(c_{t+1}^{+}) > (4 + a) \ T_1 \ ...$ (20). $A \ V(c_{t+1}^{+}) > (4 + a) \ T_1 \ ...$ (20). $A \ V(c_{t+1}^{+}) > (4 + a) \ T_1 \ ...$ (20). $A \ V(c_{t+1}^{+}) > (4 + a) \ T_1 \ ...$ (20). $A \ V(c_{t+1}^{+}) > (4 + a) \ T_1 \ ...$ (20). $A \ V(c_{t+1}^{+}) > (4 + a) \ T_1 \ ...$ (20). $A \ V(c_{t+1}^{+}) > (4 + a) \ T_1 \ ...$ (20). $A \ V(c_{t+1}^{+}) > (4 + a) \ T_1 \ ...$ (20).

T . Suppose that satisfies the hypotheses of Lemma 6. Let $Z_t = (c_t, c_{t+1}, t, t+1)$ be an orbit of 0 with $c_t \in \mathcal{N}$. Then for any $T \ge 0$ and $0 \le 0$, there is $0 \le 0$ such that for all $0 \le 0$ in (20.5716 0 0 7.5716 439. 1)

 $|f| \leq r^{t}, \forall w \qquad r > 1 \dots r^{2} - wr - 1 = 0, |w| = |x(2 + |w(x)|).$ $|f| \leq \frac{1}{2}M^{2}r^{2t}.$

6.1. Standard example, continued

 \mathcal{T} ... \mathcal{T} . \mathcal{T} .

. . . . , , , , . . , . . ⁽⁸|| | **4**|| | , , , . . | **. .** .

7. C__ c · ___

Ac _ _ t

1999. 'wiring 4. 'yang 5 - 9971760. 5 'wiring 4. 'yang 5 - 9810751.

R c

